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Abstract 

Natural language processing models based on machine learning (ML-NLP models) have 

been developed to solve practical problems, such as interpreting an Internet search query. These 

models are not intended to reflect human language comprehension mechanisms, and the word 

representations used by ML-NLP models and human brains might therefore be quite different. 

However, because ML-NLP models are trained with the same kinds of inputs that humans must 

process, and they must solve many of the same computational problems as the human brain, ML-

NLP models and human brains may end up with similar word representations. To distinguish 

between these hypotheses, we used representational similarity analysis to compare the 

representational geometry of word representations in two ML-NLP models with the 

representational geometry of the human brain, as indexed with event-related potentials (ERPs). 

Participants listened to stories while the electroencephalogram was recorded. We extracted 

averaged ERPs for each of the 100 words that occurred most frequently in the stories, and we 

calculated the similarity of the neural response for each pair of words. We compared this 

100×100 similarity matrix to the 100×100 similarity matrix for the word pairs according to two 

ML-NLP models. We found significant representational similarity between the neural data and 

each ML-NLP model, beginning within 250 ms of word onset. These results indicate that ML-

NLP systems that are designed to solve practical technology problems have a representational 

geometry that is correlated with that of the human brain, presumably because both are influenced 

by the structural properties and statistics of language. 
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1. Introduction 

This study addresses the relationship between representations of words in the human 

brain—as indexed by event-related potentials (ERPs)—and representations of words in machine 

learning models of natural language processing (ML-NLP models). In the Introduction, we begin 

by describing the general theoretical issue at stake, and then we turn to the nature of word 

representations in the models. We then describe representational similarity analysis, a general 

method for assessing links between computational models and empirical data (or between 

different types of empirical data). Because this method has been applied only rarely to ERPs, we 

provide a general overview of the method. Finally, we describe how the present study was 

designed to assess links between two specific ML-NLP models and human ERP data. 

1.1. How might machine learning models of natural language processing be 

related to the human brain? 

As machine learning models grow more competent at the human task of natural language 

processing, it is natural to question whether these ML-NLP models exhibit any functional 

resemblance to the neural systems that underlie human language processing. Machine learning 

models of natural language processing might be expected to operate very differently from the 

human brain because they run on very different hardware architectures (e.g., silicon chips 

capable of trillions of floating-point operations per second). They are not constrained by the 

relatively slow and stochastic firing of individual neurons, but they do not benefit from the 

massive parallelization that characterizes the architecture of the brain. Moreover, ML-NLP 

models have “evolved” rapidly through human engineering to solve a set of specific practical 

problems rather than evolving gradually through natural selection to maximize the overall fitness 

of the organism.  

However, natural language production and understanding is such a complex problem that 

there may be few optimal solutions, and both natural selection and engineer-guided evolution 

may therefore converge on the same solution. Moreover, if an ML-NLP model and a human 

brain are trained on similar inputs (i.e., examples of the same natural language), the structural 

and statistical properties of linguistic input itself might lead to similar representations in these 

two systems. Thus, the representations used by ML-NLP models and human brains might be 

unrelated (owing to their different architectures and goals), highly similar (owing to similarity in 

their training), or somewhere in between. The goal of the present study was to identify the extent 

of convergence between ML-NLP models and the human brain in the specific case of lexical 

representations. 

ML-NLP models have been created that can accomplish various practical tasks such as 

question answering and named entity extraction (Devlin et al., 2018; Peters et al., 2018). In 

particular, we examined ML-NLP models of word embeddings or word vectors. Word 

embeddings are word representations that quantitatively capture the notion that words that appear 

in similar sentential environments (in terms of the surrounding words) tend to have similar 

meanings, an idea dating back to the distributional hypothesis (Firth, 1957; Harris, 1954). For 

example, there is a limited set of words that are likely to appear in the context “The fluffy brown 

_____ groomed itself on the windowsill.”  

Building on this idea, computational linguists have trained models that use contextual 

information to map words to continuous vectors, representing each word as a point in a high-

dimensional space (see Figure 1A). These vectors or word embeddings can then be used to 

determine the similarity between any given pair of words (i.e., the distance between them in the 
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high-dimensional space), and the vectors can be used to improve the performance of a variety of 

downstream tasks. For example, “bucket” and “pail” have similar word embedding vectors, and 

this similarity can be used to ensure that an Internet search request that includes the word 

“bucket” will also return results that contain the word “pail”.  

Word embeddings are also interesting to cognitive psychologists because they loosely 

resemble spreading activation theories insofar as semantically and syntactically similar words are 

represented close together in the embedding space (Foltz, 1996; Foltz et al., 1998; Landauer et 

al., 1998). However, the individual dimensions used by ML-NLP models do not typically have 

an obvious interpretation and are instead statistical abstractions. 

1.2. Representational similarity analysis 

Comparing computational models such as these with the human brain can be challenging 

because superficial differences between them may obscure fundamental similarities. In 

particular, it may be difficult to map the representational elements in a model (e.g., a vector in a 

word embedding space) onto the macro-level population measures of brain activity that can be 

obtained noninvasively from human research participants. That is, even if there is a perfect 

relationship between the representation of a word in a model and the representation of that word 

in the brain, we may not be able to detect this relationship because we do not know the exact 

function that maps the model’s representation of the word onto the pattern of brain activity 

elicited by that word, especially as measured macroscopically by the pattern of BOLD activity 

across voxels in fMRI or the pattern of voltages across electrode sites in EEG. 

This problem can be addressed by means of representational similarity analysis (RSA), 

which overcomes superficial differences between representational systems by comparing their 

similarity structures. In RSA, the structure of a given representational system (the 

representational geometry) is quantified by feeding a large number of different inputs into the 

system, measuring the pattern of activity elicited by each input, and computing the similarity of 

the response to each possible pair of inputs. This is illustrated in Figure 1, which shows how 

RSA could be applied to the representations of a set of 100 different words. 

In this example, we feed 100 different words into a ML-NLP model, obtain a vector for 

each word in the word embedding space, and calculate the similarity between each pair of word 

vectors in this space. The similarity between two words is defined in terms of the angle between 

the vectors in the embedding space1. In Figure 1A, for example, the words “see” and “hear” are 

relatively close together in the embedding space and would have a high similarity score, whereas 

“quick” is far away and would have low similarity scores with respect to “see” and “hear.”  For 

the set of 100 words in this example, we would form a 100×100 representational similarity 

matrix that contains all the pairwise similarity scores, as shown in Figure 1B. This matrix 

captures the representational geometry of the model in a manner that is abstracted away from the 

original dimensions of the embedding space. 

We can present the same set of 100 words to a human research participant and record the 

participant’s neural responses for each word. We can then quantify the similarity between the 

neural responses to each pair of words. There are several potential metrics of similarity, but 

many studies simply use the correlation between the neural patterns. For example, we could 

obtain the ERP scalp distribution for each word during a given time period and compute the 

 
1 Note that only three dimensions are shown for the word embedding space in Figure 1A, but ML-NLP models 

typically use hundreds of dimensions. 
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correlation2 between the scalp distributions elicited by two words, as shown in Figure 1C. If we 

obtain the correlation between each pair in our set of 100 words, we can construct a 100×100 

representational similarity matrix for the neural responses, as shown in Figure 1D. This matrix 

captures the representational geometry of the neural response in a manner that is abstracted away 

from the original dimensions of the neural recording (which might be electrode sites, time points, 

voxels, etc., depending on the recording method). No matter what the original dimensions are, 

we can form a 100×100 representational similarity matrix from the correlations between the 

patterns of neural activity elicited by each word pair. 

By creating 100×100 representational similarity matrices for both the ML-NLP model 

and the neural activity, we have quantified the representational geometry of each system in the 

same units (a 100×100 matrix of similarity values). We can then ask whether the model and the 

brain have similar representational geometries by simply calculating the correlation between the 

two matrices. For reasons discussed in the Method section, a rank-order correlation is used for 

comparing the two matrices. The upper and lower triangles of the matrices are mirror 

symmetrical, and the values are always 1 along the diagonal, so the correlations between the 

matrices are computed from the lower triangles (or from the upper triangles, which yields 

identical results). 

This approach has been widely used to compare neural network models of visual image 

classification (deep convolutional neural networks) with human neural responses to images. For 

example, Cichy et al. (2016) obtained MEG and fMRI responses to a set of 188 natural images in 

a set of human research participants, and they also fed these images into a neural network model 

that had been trained to classify objects. A separate representational similarity matrix was 

obtained for each area of visual cortex in the fMRI data, for each time point in the MEG data, 

and for each of the 8 layers of the model. The matrices from the lower layers of the model 

showed the highest correlations with the matrices for the early stages of the visual processing 

pathway in the fMRI data and with the matrices for the early time points in the MEG data. By 

contrast, the matrices from the higher layers of the model showed the highest correlations with 

higher-level brain regions in the fMRI data and later time points in the MEG data. This is exactly 

what would be expected given that the flow of information from lower to higher levels of the 

model should map onto the flow of information from lower to higher brain areas in the fMRI 

data and the flow of information over time in the MEG data. A similar correspondence between 

layers and time points was observed between a convolutional neural network model of scene 

categorization and the ERP responses to a set of scenes (Greene & Hansen, 2018). We have also 

used this approach to link ERPs with models of the spatial distribution of saliency and semantic 

informativeness in visual scenes (Kiat et al., under review). These results provide an important 

proof of principle for using RSA to link computational models to ERP measures of brain activity. 

1.3. The present study 

The present study compared ERP data to two models of word embeddings that have quite 

different architectures but that both aim to represent discrete words as continuous vectors. The 

first, Fasttext (Bojanowski et al., 2017), is an extension of the word2vec approach (Mikolov et 

al., 2013), which involves correlating a word and its contexts in a corpus. It was trained with text 

from English Wikipedia to predict the surrounding words in an utterance given an input word. 

 
2 The Pearson r correlation coefficient has some useful properties as a measure of similarity. One is that it is simple 

and well-understood. Another is that it represents the similarity of two neural patterns irrespective of the amplitude 

of the neural response. For a detailed comparison of distance metrics, see Guggenmos et al. (2018). 
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The model also takes into account an approximation of the morphological similarity between 

words by giving embeddings to within-word character sequences. For example, the word 

“language” contains the following 3-character sequences: <la, lan, ang, ngu, gua, uag, age, ge>, 

with the angle brackets representing word boundaries. The vectors of the subword sequences are 

summed to enhance the representation of a word. Consequently, if two words are similar in 

spelling, they will have similar vectors by virtue of having overlapping subword sequences. For 

example, the vector for “language” will be very similar to the vector for “languages” (or even 

misspellings of “language”), and this makes the model more robust. 

The second model of word embeddings we will consider, ELMo (Peters et al., 2018), is 

based on a recurrent neural network trained on 800 million words from web-crawled news 

articles in English (Chelba et al., 2014). The embeddings drawn from this model are context 

dependent, meaning that words that appear in different environments will produce different 

representations. For example, the word “orange” would have a different embedding when 

preceded by “the color” than when preceded by “the juicy.” This reflects the structure of English, 

because a given word token can have different meanings in different contexts. By contrast, 

Fasttext has a single representation of “orange” that is similar to both the representations of other 

colors and the representations of other fruits. Note that multiple factors impact word 

embeddings, including predictability as well as meaning. 

We chose the Fasttext and ELMo models because they are structurally very different (a 

simple statistical representation versus a recurrent neural network) but are both based solely on 

statistical regularities in the sequence of words and contain no explicit semantic information. 

Thus, it is plausible that the pattern of representational similarity in these models will be quite 

different from the pattern in the human brain, which presumably has explicit representations of 

concepts such as “see,” “hear,” and “quick.” On the other hand, the pattern of word 

representations in the human brain may be strongly influenced by statistical regularities in the 

linguistic input (Saffran et al., 1996), and this might lead the representational similarity structure 

of the brain to be to very similar to the representational similarity structure of the ML-NLP 

models. 

The conventional way of measuring similarity between word embeddings in the models is 

to take the cosine distance between them (which is nearly identical to the correlation between 

them3), and this is how we constructed the representational similarity matrices for the models. 

The most intuitive way of measuring the similarity of words in the human mind would be to ask 

people to explicitly rate the similarity of each pair of words (as in the WordSimilarity-353 

(Finkelstein et al., 2002) and SimLex-999 (Hill et al., 2014) databases). However, collecting 

human data this way is slow and expensive, especially considering that a 100-word similarity 

matrix requires judgments of 4950 unique pairs of words. In addition, explicit ratings of 

similarity are unidimensional, and very different ratings of similarity may be obtained depending 

on how people collapse the underlying multidimensional space into a unidimensional rating 

scale. Moreover, an explicit similarity judgement task may not be well suited for classes of 

words with little semantic content (e.g., function words such as “the” and “for”).  

Because of these shortcomings of explicit similarity judgments, we assessed the 

similarity of word representations in humans by means of ERPs, which are inherently 

multidimensional and can be obtained during natural language comprehension without the need 

 
3 The cosine distance quantifies the difference in the angles of the two vectors, disregarding differences in the 

lengths of the vectors. This is analogous to the fact that the Pearson r correlation coefficient quantifies the similarity 

of two patterns while disregarding the overall amplitudes of the patterns. 
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for an explicit similarity rating. Our ML-NLP models were designed for natural language, so we 

chose an ERP data set from a prior experiment in which participants simply listened to two half-

hour Sherlock Holmes stories that were spoken with normal timing and inflection. An important 

strength of this data set is that participants were engaged in completely natural language 

processing, including both the nature of the linguistic input and the processing that was applied 

to this input. There is perhaps nothing more natural for humans than to listen to stories. 

Moreover, RSA often benefits from the lack of an explicit task, because task-induced 

categorization processes may influence the similarity structure of the ERPs (e.g., due to 

nonlinguistic activity such as the P3 wave).  

The downside of this type of data set is that we did not exert experimental control over 

the number of words, the types of words, or the order of words. As a result, some words occurred 

frequently, allowing for clean averaged ERPs, but other words occurred rarely. In addition, the 

current word was often predictable from the preceding words. However, our ML-NLP models 

were trained by predicting words from their contexts in natural language, so this data set matches 

the models quite well. In addition, RSA is particularly well suited for studying natural stimuli, 

including natural speech and natural visual scenes. Thus, the strengths of this data set 

outweighed the weaknesses for the goals of the present study. 

To deal with the varying numbers of instances per word, our main analyses focused on 

the 100 words that occurred most commonly in these stories (see Table 1, which lists the words 

and the number of occurrences of each word). An averaged ERP waveform was constructed for 

each of these words. When we assessed the similarity in neural activity for each pair of words, 

we took into account both the shape of the waveform at each site and the distribution of voltage 

over the scalp4 (see Figure 2 and Method for details). This gave us a 100×100 similarity matrix, 

which we could then compare with the similarity matrices from the Fasttext and ELMo models.  

The representational similarity between the neural data and a given model was quantified 

as the rank-order correlation between the corresponding representational similarity matrices. 

Semipartial correlations were used to assess the extent to which each ML-NLP matrix explained 

unique variance in the neural representational similarity matrix. We also computed ERP 

similarity matrices at each individual time point in the ERP waveforms, focusing solely on the 

similarity of the scalp distributions at a given time point, which made it possible to examine the 

time course of the relationship between the ERP data and the models. 

If the ML-NLP models examined here represent words very differently than the human 

brain because of their different origins and goals, then the representational similarity matrices of 

the models should be largely unrelated to the representational similarity matrix derived from the 

neural data. By contrast, if the models and the human brain represent words similarly because 

they were both trained on the same language and have converged on similar solutions to the 

problems posed by natural language processing, then the similarity matrices of the models should 

be correlated with the similarity matrix from the neural data.  

We can use the same approach to address whether Fasttext and ELMo have converged on 

similar representational structures (i.e., by computing the correlation between the similarity 

matrices of the two models). The strength of the correlation between these two models can be 

used as a benchmark for assessing the strength of the correlation between the neural data and 

each model. That is, given that Fasttext and ELMo were both designed to achieve the same 

 
4 This combined use of waveform shape and scalp distribution gave us an overall metric of the similarity in the 

neural representations of each pair of words, which we could compare with the overall similarity of the ML-NLP 

embeddings for each pair of words. 
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fundamental goal, the magnitude of the correlation between the Fasttext and ELMo similarity 

matrices provides a reasonable benchmark for the highest correlation that might be expected for 

the correlation between the ERP-based similarity matrix and each of the ML-NLP models. 

2. Method 

2.1. Experimental Paradigm and EEG Recordings 

This study made use of EEG data collected by Boudewyn and Carter (2018), and a more 

detailed description of the participants, experimental paradigm, and recording procedures can be 

found in their paper. The data and our analysis scripts are publicly available at 

https://osf.io/zft6e/. 

Complete data sets with an acceptable number of artifact-free EEG segments were 

available from 38 participants (11 male and 27 female). Two participants were excluded because 

they did not complete the experiment and two more were excluded because of excessive artifacts 

(see below). The participants were right-handed, native English speakers enrolled as students at 

the University of California, Davis (mean age 20.4 years). 

The participants simply listened to two Sherlock Holmes stories (The Three Students 

(Doyle, 1905), 34.4 min duration, and The Emerald Crown (Doyle, 1992), 38.4 min duration), 

narrated by a woman with typical American English inflections and at a natural speaking rate. 

There was no explicit task. The original study was designed to assess how lapses of attention 

impacted the ERPs elicited by a subset of the words. Therefore, on 54 occasions, the stories were 

interrupted by questions asking the participants about their current attentional state. The EEG 

and behavioral data from these questions were not analyzed in the present paper. 

The EEG was recorded from 29 scalp channels, with the right mastoid being used as the 

recording reference. Bipolar vertical and horizontal electrooculogram recordings were obtained 

using electrodes above, below, to the right, and to the left of the eyes. The signals were amplified 

with half-amplitude bandpass cutoffs at 0.05 and 100 Hz, digitized at 500 Hz, and later down-

sampled to 250 Hz.  

2.2. EEG preprocessing 

Data preprocessing was performed using Matlab with the EEGLAB toolbox (Delorme & 

Makeig, 2004) and the ERPLAB plugin (Lopez-Calderon & Luck, 2014). The continuous signals 

were filtered offline using noncausal Butterworth filters (high-pass: half-amplitude cutoff at 0.1 

Hz, 12 dB/oct roll-off; low-pass: half-amplitude cutoff at 20 Hz, 48 dB/oct roll-off). Independent 

component analysis (ICA) was used to correct for eyeblinks. 

Event codes were inserted into the EEG files at the estimated onset time of each word on 

the basis of a procedure that made use of the transcripts of the two stories and the audio 

recordings. First, the transcripts were tokenized with the NLTK tokenizer (Bird et al., 2009). The 

onset time of each token was then estimated using the Montreal Forced Aligner (McAuliffe et 

al., 2017), and the event code was inserted at the corresponding time within the EEG data file. 

The results were compared with a sample of words that were hand-labeled by one of the authors 

(M.A.B.). The mean absolute error of the aligner relative to the expert experimenter was 18.73 

ms for The Emerald Crown and 20.32 ms for The Three Students. Additional details are provided 

in online supplementary materials. Note that any random error in the timing of the event codes 

will have an effect equivalent to applying a low-pass filter in the time domain (Luck, 2014). 

These timing errors may slightly “smear out” the data, but this should mainly impact the short-

https://osf.io/zft6e/
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latency ERP components and not the longer-latency components that are most likely to contain 

information that is related to the word embeddings in the ML-NLP models. Thus, any errors in 

event code timing should have relatively little impact on the primary goal of the study, which is 

to assess the extent to which word representations in ML-NLP models are similar to those in the 

human brain. 

Data analysis was limited to the 100 words that occurred most frequently across the two 

stories (see Table 1 for the actual words, along with the mean number of occurrences of each 

word both before and after artifact rejection). RSA benefits from having a large number of 

individual stimuli. This increases the size of each representational similarity matrix, which in 

turn increases the degrees of freedom in the correlation between a pair of matrices. It also 

increases the likelihood that the set of stimuli is reasonably representative. However, RSA also 

benefits from a high signal-to-noise ratio in the ERPs for each stimulus, which can be achieved 

by averaging together a large number of trials for each stimulus. To balance these two competing 

considerations, we chose the 100 words that occurred most often in the two stories for the 

primary analyses. This gave us a reasonably representative set of words and 4948 degrees of 

freedom when correlating a given pair of representational similarity matrices. It also gave us a 

minimum of 12 instances of each word and therefore reasonably clean averaged ERPs. We also 

provide a secondary analysis of all 14,804 word tokens that appeared in the two stories. 

The EEG data for the 100 selected words were epoched, using the event codes at the 

estimated word onset as time zero, with a 200 ms prestimulus baseline and a 1000 ms period 

after the word onset. The epochs were baseline corrected using the mean voltage during the 

prestimulus period. A moving window peak-to-peak artifact rejection algorithm was applied 

(with a threshold of 200 µV) to eliminate epochs with implausibly large voltage excursions. This 

led to a mean rejection rate of 6.34% (range: 0-50.7%). We always exclude participants for 

whom more than 25% of trials are rejected (Luck, 2014), and 2 participants were excluded for 

this reason, yielding a final sample of 34 participants. 

All artifact-free occurrences of a given word were averaged together to yield a separate 

ERP waveform for each word. Different forms of the same word (e.g., “hit” and “hits”) were 

treated as different words. Contractions were divided into separate words (e.g., “didn’t” was 

separated into “did” and “n’t”). Note that the averaged ERP for a given word represents the 

average response to the word across the different contexts in which the word occurred. As 

described in the next section, the ML-NLP word embeddings used for the main analyses were 

also constant across word contexts. 

2.3. Word Embedding Models 

Two word embedding models were used. The Fasttext model (Bojanowski et al., 2017) 

uses an enhancement of the skip-gram approach introduced by Mikolov et al. (2013), adding 

subword n-grams so that spellings contribute to similarity and to allow generalization to 

untrained words. We simply obtained the Fasttext embedding vector for each of the 100 words 

shown in Table 1, combining the subword sequences. 
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Table 1. Top 100 words (mean number of instances after artifact rejection, standard deviation, 

true frequency). 

Function words 

and (360.24, 
21.71, 376) 

the (317.56, 
17.36, 331) 

i (277.94, 
16.09, 289) 

that (278.12, 
18.14, 291) 

to (244.56, 
16.28, 256) 

was (237.12, 
13.36, 247) 

you (208.24, 
14.82, 218) 

he (192.91, 
12.35, 202) 

his (178.59, 
10.87, 187) 

had (152.24, 
9.88, 159) 

have (152.71, 
9.96, 159) 

of (143.21, 
7.76, 149) 

it (139.53, 
8.77, 146) 

is (133.68, 
8.12, 140) 

my (133.94, 
8.37, 140) 

not (115.47, 
8.03, 121) 

with (112.00, 
6.68, 117) 

in (104.56, 
6.25, 109) 

as (97.74, 
7.82, 103) 

me (94.09, 
7.40, 99) 

for (98.62, 
7.47, 104) 

your (95.35, 
6.52, 100) 

this (93.74, 
5.78, 98) 

be (89.71, 
5.85, 94) 

but (85.03, 
5.93, 89) 

there (77.09, 
5.37, 81) 

no (77.29, 
3.87, 80) 

which (71.09, 
5.79, 75) 

him (69.44, 
5.56, 73) 

on (69.65, 
5.04, 73) 

so (68.91, 
4.52, 72) 

what (67.47, 
4.84, 71) 

would (65.06, 
4.03, 68) 

then (63.18, 
4.09, 66) 

when (61.06, 
3.92, 64) 

could (63.09, 
3.87, 66) 

been (58.82, 
3.53, 61) 

very (58.79, 
3.11, 61) 

she (55.12, 
4.84, 58) 

at (55.38, 
4.08, 58) 

by (53.65, 
3.48, 56) 

were (54.35, 
4.07, 57) 

from (53.38, 
3.54, 56) 

all (53.53, 
3.79, 56) 

up (47.47, 
3.52, 50) 

now (46.71, 
3.37, 49) 

do (52.24, 
4.27, 55) 

can (43.12, 
2.86, 45) 

into (42.15, 
2.89, 44) 

out (42.91, 
3.15, 45) 

who (40.29, 
2.79, 42) 

if (39.79, 3.06, 
42) 

did (37.21, 
2.91, 39) 

we (36.56, 
2.43, 38) 

down (35.65, 
2.09, 37) 

only (35.53, 
2.34, 37) 

must (34.53, 
2.34, 36) 

will (36.03, 
2.71, 38) 

has (33.74, 
2.12, 35) 

a (32.03, 1.24, 
33) 

about (30.44, 
2.83, 32) 

where (30.74, 
2.09, 32) 

our (30.41, 
2.70, 32) 

over (28.74, 
1.91, 30) 

them (28.79, 
1.81, 30) 

her (28.59, 
2.19, 30) 

am (27.76, 
2.03, 29) 

well (26.82, 
2.11, 28) 

should (26.88, 
1.77, 28) 

they (24.56, 
2.39, 26) 

an (15.26, 
1.42, 16) 

n't (14.24, 
1.46, 15) 

are (11.38, 
0.95, 12)      

Content words 

holmes 
(190.74, 
11.56, 200) 

said (163.18, 
9.48, 171) 

mr (109.71, 
6.30, 115) 

one (79.26, 
5.14, 83) 

asked (72.59, 
4.78, 76) 

room (61.71, 
2.98, 64) 

man (59.24, 
4.05, 62) 

payton (56.82, 
3.53, 59) 

bannister 
(51.12, 3.44, 
53) 

holder (47.82, 
3.93, 51) 

think (45.12, 
3.09, 47) 

see (44.21, 
2.29, 46) 

answered 
(43.88, 3.36, 
46) 

door (42.85, 
2.70, 45) 

sir (42.38, 
2.45, 44) 

back (42.18, 
2.75, 44) 

left (32.88, 
1.63, 34) 

came (31.65, 
2.17, 33) 

table (31.12, 
1.72, 32) 

papers (29.65, 
2.98, 31) 

three (29.88, 
1.61, 31) 

went (30.38, 
2.47, 32) 

matter (28.68, 
2.17, 30) 

window 
(29.65, 1.89, 
31) 

little (26.59, 
2.08, 28) 

other (26.56, 
2.48, 28) 

come (26.65, 
2.13, 28)    

 

The ELMo model (Peters et al., 2018) uses a deep recurrent neural network language 

model that returns token-by-token embedding vectors given a sentence as its input. 

Consequently, whereas Fasttext produces a static, context-independent embedding vector for a 

given word, the embedding vector returned by ELMo for a given token depends on the context in 

which that word occurs. Because the ERP for a given word in the present study was created by 
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averaging across all the contexts in which the word appeared in the two stories, we computed an 

average ELMo embedding vector for each word in the contexts of these two stories. That is, the 

ELMo embeddings were obtained by feeding each sentence from the two stories into the mode 

and then averaging the embeddings over all occurrences of each of the 100 words shown in 

Table 1. A secondary analysis was conducted for ELMo in which the context-specific 

embeddings were used. 

2.4. Representational Similarity Analysis 

RSA was performed using custom Python scripts, which are available at 

https://osf.io/zft6e/. For both Fasttext and ELMo, we quantified the similarity between each pair 

of words as the cosine similarity between the word embedding vectors (because that is the most 

common metric of similarity in studies of word embedding spaces). The cosine similarity is the 

dot product of the two vectors after normalization, which is equivalent to the cosine of the angle 

between the two vectors. If all vectors were normalized to the same length, cosine similarity 

would yield the same rank order as the Euclidean distance. This procedure yielded a 100×100 

matrix representing the pairwise similarities between the individual words for each of the two 

models. Note that the same matrices were used for each participant and each time point. 

We constructed a corresponding similarity matrix for the ERP data, separately for each 

participant. The procedure is illustrated graphically in Figure 2. We first subtracted the average 

ERP across words (with each word given equal weight) from each individual-word ERP. This 

eliminates any correlation between the ERPs for different words resulting from ERP activity that 

is constant across words. The waveforms during the poststimulus period from each channel for a 

given word were then concatenated end-to-end, producing a single vector of voltage values that 

includes both the spatial and temporal variation in voltage corresponding to that word. The 

similarity between each pair of words was quantified as the Pearson r correlation between the 

vectors of voltage values for the two words. This yielded a single similarity value for each word 

pair, which were organized into a 100×100 matrix using the same arbitrary ordering used for the 

Fasttext and ELMo similarity matrices. 

The upper and lower triangles of this similarity matrix are mirror images of each other, 

and the diagonal separating them represents the similarity of a word with itself. When comparing 

matrices, we excluded the diagonal and the lower triangle. Given that relationship between a 

given pair of matrices might not be linear, we used the Spearman rho rank order correlation 

coefficient to quantify the similarity between the ERP similarity matrix for a given participant 

and the Fasttext or ELMo similarity matrix (which were identical across participants). We also 

used semipartial rank order correlations to quantify the amount of variance in the ERP similarity 

matrix that could be uniquely explained by each of the two ML-NLP models.  

Because our main dependent variability was the Spearman rho correlation coefficient 

(i.e., our metric of representational similarity), and correlation coefficients are unlikely to be 

normally distributed, we used nonparametric statistical tests. First, we used bootstrapping with 

100,000 random draws to compute 95% confidence intervals for the mean Spearman rho across 

participants. Second, we used the nonparametric Wilcoxon signed-rank test to determine whether 

the mean Spearman rho was significantly greater than zero. One-tailed tests were used when 

comparing rho values against chance because negative values are typically uninterpretable in 

RSA. We used an alpha of .05 for all statistical analyses. 

To make sense of the range of similarity values, we calculated the noise ceiling for the 

ERP data, which provides an estimate of the highest correlation that could be obtained given the 

https://osf.io/zft6e/
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noise in the data (Nili et al., 2014). For analyses using Spearman rho, the upper bound is the 

averaged rho of the correlations between individual correlation matrices and the grand average 

correlation matrix. The lower bound is the same, except using a separate grand average 

correlation matrix for each participant that excludes that participant’s data. 

We also computed a grand average ERP similarity matrix by averaging the ERP 

similarity matrices across participants and examined the Spearman rho correlation between this 

matrix and the similarity matrix for each of the ML-NLP models. This provides an estimate of 

the magnitude of the correlation between the “average” person (with minimal noise) and each of 

the ML-NLP models. We used bootstrapping with 100,000 random draws to compute the 95% 

confidence interval for each of these correlations. Note, however, that averaging the similarity 

matrices across participants can be problematic (Ashby, 2019; Ashby et al., 1994), so these 

analyses should be treated with caution. 

2.5. Time Course Analyses 

To obtain temporal information, we also performed the RSA separately at each sample 

point. That is, rather than concatenating each entire ERP waveform for the various electrode 

sites, we quantified the similarity between two words as the similarity (Pearson r correlation) 

between the scalp distributions observed for the two words at a given time point. Each time point 

was treated separately. The ERP similarity matrix at a given time point was then compared to the 

representational similarity matrix for each of the two NLP models using the Spearman rho 

correlation coefficient. This analysis was performed separately for each subject. 

The noise ceiling was estimated separately at each time point, using the same approach as 

in the whole-waveform analyses. 

We used a one-tailed Wilcoxon signed-rank test to determine whether the mean 

Spearman rho across participants was significantly greater than zero at each time point. Given 

the large number of individual time points, we applied a false discovery rate (FDR) correction 

(Benjamini & Hochberg, 1995) to the results from each model to correct for multiple 

comparisons. 

3. Results 

3.1. Basic characteristics of the words and the ERP waveforms 

Table 1 shows the 100 most frequent words in the two stories, along with the number of 

instances of each word across the two stories. Because some trials were excluded from the ERP 

averages due to EEG artifacts, the number of words per averaged ERP differed across 

participants. Table 1 therefore shows the mean number of instances of each word after artifact 

rejection, the standard deviation of the number of words, and the number of instances in the 

stories prior to rejection. We classified each word as a function word (e.g., “and”, “the”) or a 

content word (e.g., “room”, “came”), because these two categories of words are known to elicit 

different ERPs when presented in isolation (Brown et al., 1999; Kutas & Hillyard, 1983). Of the 

100 words, 73 were function words and 27 were content words. Most of our analyses disregarded 

this classification, but secondary analyses were conducted separately for function and content 

words. 

Figure 3 shows the grand average ERP waveforms separately for the average of the 27 

content words and for the average of the 73 function words at the midline electrode sites. The 

ERP waveforms were quite different for these two classes of words. For example, the voltage in 
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the N400 latency range was more negative for the content words than for the function words, as 

in previous research (Neville et al., 1992). Differences between the waveforms were also 

observed at or before the onset of the word, suggesting that at least some of the differences 

reflect differential overlap from preceding words. An inevitable consequence of examining ERPs 

during natural language comprehension is that the voltage at a given time point is impacted by 

the previous words as well as the current word. However, this is not an artifact of the ERP 

method per se: The cognitive processing of one word presumably does not stop when the next 

word is heard. 

3.2. Similarity between the NLP models 

Figure 4 shows the similarity matrices for Fasttext and ELMo models, along with the 

similarity matrix for the ERP data (averaged across participants, and based on the entire 

spatiotemporal pattern of the ERPs). The words are divided into function and content words 

(separated by a white line), and words within each group are ordered according to the number of 

occurrences of each word in the two stories. A close inspection of the matrices for the two ML-

NLP models reveals some similarities in the patterns. For example, the similarity matrices for 

both models contain a bright yellow vertical band (indicating high similarity between word pairs) 

and then a dark purple vertical band (indicating low similarity) just to the right of the line 

separating the function and content words (see purple arrows in Figure 4). However, given that 

both models attempt to represent word embeddings as continuous vectors on the basis of the 

surrounding words, their similarity matrices were far from identical. Indeed, the Spearman rho 

correlation between them was only 0.49 (p<.001)5. 

The grand average ERP similarity matrix shown in Figure 4 also bears some resemblance 

to the similarity matrices for the two NLP models (see, e.g., the green boxes). The Spearman rho 

correlation between the ERP matrix and the ELMo-ERP matrix was 0.30 (p<.001), and the 

correlation between the ERP matrix and the Fasttext matrix was 0.21 (p<.001). Thus, the 

representational similarity between the group-level ERP data and each of the ML-NLP models 

was only moderately lower than the similarity between the two models.  

However, averaging similarity matrices across individuals can be problematic (Ashby, 

2019; Ashby et al., 1994), so these correlations should be treated with caution. An example of 

the types of incorrect conclusions that can result from averaging the similarity matrices across 

participants is provided in the online supplementary materials. All subsequent analyses used 

single-participant ERP similarity matrices. 

3.3. Single-participant RSA findings 

Our primary analyses focused on comparing single-participant ERP similarity matrices to 

the matrices for the two models. As shown in Figure 5, both the ELMo-ERP and Fasttext-ERP 

correlations were above zero for every participant. The mean ELMo-ERP correlation was 0.086 

(95% CI [0.07 0.10]), and the mean Fasttext-ERP correlation was 0.057 (95% CI [0.04 0.07]). A 

sign test indicated that each of these was significantly greater than zero (p<.001).  

 
5 This analysis was limited to the 100 words that were used in the main comparison with the ERP data. We also 

computed the representational similarity between the two models using all 2339 distinct words that were present in 

the two stories. This actually led to a lower correlation (0.38, p <.001) between the two models than the correlation 

of 0.49 observed with only the top 100 words. We also trained Fasttext on the same dataset that ELMo was trained 

on, and the correlation between the matrices for the two models (using the original set of 100 words) increased only 

slightly from 0.49 to 0.51.  
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The single-participant data contained substantial noise, so it is not surprising that these 

correlations were much lower than those obtained for the grand average ERP similarity matrix 

(and lower than the kinds of correlations that are often observed in psychological research)6. To 

put these correlations into context, we computed the noise ceiling, which indicates the best 

correlation that could be expected given the noise in the data (Nili et al., 2014). The lower and 

upper bounds of the noise ceiling were 0.15 and 0.26, respectively. Thus, we estimate that the 

ELMo accounted for between 33.3% and 56.0% of the explainable data, and Fasttext accounted 

for between 22.1% and 37.2%. 

A permutation test was applied (by randomly shuffling the labels of the embeddings) to 

test whether the correlation between each of the two models and the ERP data was statistically 

significant for each individual participant. All 34 participants exhibited positive Fasttext-ERP 

and ELMo-ERP correlations, which were statistically significantly above chance for each 

participant in a permutation test (even when applying a false discovery rate correction 

(Benjamini & Hochberg, 1995)). Thus, although the correlations were low by conventional 

standards, they were remarkably consistent across participants. 

Figure 5 also shows the semipartial correlations for the single-participant ERP data, 

which indicate the extent to which the ERP similarity matrix was correlated with a given ML-

NLP matrix after partialling out the correlation with the other NLP matrix. The mean ELMo-

ERP semipartial correlation across participants (after partialling out Fasttext) was well above 

zero (mean = 0.056, 95% CI [0.045 0.067], sign test z = 5.49, p < .001), whereas the mean 

Fasttext-ERP semipartial correlation (after partialling out ELMo) was only slightly and 

nonsignificantly greater than zero (mean = 0.014, 95% CI [0.006 0.022], sign test z = 1.37, p = 

.085). Thus, the representational similarity matrix for ELMo explained significant unique 

variance in the single-participant ERP representational similarity matrices. 

We also asked how well the two ML-NLP models together could account for the ERP 

data. This was quantified by putting the similarity matrices for both models into a single 

regression model and computing the multiple r for predicting the ERP similarity matrix 

(separately for each participant). We found a multiple r of 0.094, which was slightly higher than 

the correlations for each model separately. 

3.4. Separate analyses of content and function words 

One possible criticism of the observed RSA effects is that they may merely reflect overall 

differences in ERPs between content and function words and not the representational structure 

within these coarse categories. If this were true, then the representational similarity between the 

models and words within each category should be zero. We tested this hypothesis by conducting 

separate RSA analyses (using single-participant ERP similarity matrices) for the 27 content 

words and for the 73 function words. Pronouns are somewhat different from other function 

words, so we also conducted an analysis with the 59 function words that excluded the pronouns. 

Table 2 shows these correlations averaged across participants. Although these model-ERP 

correlations were lower than the correlations observed for the entire set of 100 words, they were 

significantly greater than zero (see Table 2). These findings demonstrate that the results for the 

entire set of words was not driven by the simple distinction between function and content words. 

 
6 It would also be possible to reduce the noise by obtaining a grand average ERP waveform across participants for 

each word and then creating the ERP similarity matrix from these grand average waveforms. However, this assumes 

that the patterns of scalp distributions for the different words are identical across participants, which is unlikely to be 

true given the variability of cortical folding patterns across individuals. 
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Table 2. Representational similarity correlations computed separately for content and function words. 

 Fasttext ELMo 

Content words (noise 

ceiling bounds [0.11 0.22]) 

0.033 (95% CI [0.012 0.054], p < 

0.01) 

0.048 (95% CI [0.025 0.071], p < 

0.01) 

Functions words (noise 

ceiling bounds [0.18 0.27]) 

0.060 (95% CI [0.046 0.074], p < 

0.01) 

0.086 (95% CI [0.070 0.103], p < 

0.01) 

Functions words excluding 

pronouns (noise ceiling 

bounds [0.15 0.25]) 

0.072 (95% CI [0.054 0.089], p < 

0.01) 

0.074 (95% CI [0.057 0.091], p < 

0.01) 

 

3.5. Equalizing the number of instances of each word  

Another concern is that word-to-word differences in the number of EEG epochs being 

averaged together could be a potential confound. In general, if a word appears in the dataset 

more frequently, the ERP waveform for that word would be less noisy, and this might artificially 

create stronger correlations between the ERPs to frequently occurring words. To address this 

possibility, we conducted analyses in which we subsampled from the available trials to equate 

the number of trials in each averaged ERP. We selected words that appeared at least 30 times 

across all participants after artifact rejection (68 of the 100 words) and randomly sampled 30 

trials for each word without replacement before creating the averaged ERPs and performing the 

representational similarity analysis (using single-participant ERP similarity matrices). We 

repeated the analysis 100 times (with different random samplings of 30 instances of each word) 

and averaged the rho values across repetitions. The mean correlation with ELMo was 0.030, and 

the averaged mean correlation with Fasttext was 0.024. These correlations are substantially 

smaller than those obtained in the original analyses, but this would be expected because the 

smaller number of trials led to noisier data. Indeed, the noise ceiling was substantially lower 

([0.022 0.173]). The mean correlations were actually higher than the noise ceiling, suggesting 

that the reduction in rho values was mainly due to the increased noise in the data. Therefore, 

frequency of occurrence was likely not a major contributor to the correlation between the ERPs 

and the word embeddings. 

3.6. Single-trial analyses 

Averaging across instances of a given word is useful for increasing the signal-to-noise 

ratio of the ERP data, which in turn increases the possible range of correlations (the noise 

ceiling). However, it is possible to perform RSA on single-trial data if one is willing to accept a 

much lower ceiling on the range of possible correlations. We therefore conducted a single-trial 

analysis of the present data. 

The analysis was identical to the main single-participant analysis of the top 100 words, 

except that each instance of a word was treated as a completely separate stimulus. That is, to 

construct the ERP similarity matrix, we obtained the correlation between the single-trial EEG 

epochs for each pair of stimuli, disregarding whether two stimuli were different words or 

different instances of the same word. There were 14804 different word tokens, so this could 

potentially create a 14804×14804 ERP similarity matrix for each participant. However, EEG 

epochs containing artifacts were excluded, separately for each participant. A mean of 13982 

epochs was present after artifact rejection, so the average EEG similarity matrix was 

13982×13982. 
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A similarity matrix with the same dimensionality was created for each of the two ML-

NLP models, separately for each participant (to account for the differences in which epochs were 

rejected for different participants). When two different cells coded the similarity between the 

same two words, the similarity value was simply repeated in these two cells. We then computed 

the Spearman rho correlation between the single-trial EEG similarity matrix and the 

corresponding ML-NLP similarity matrices to quantify representational similarity. 

The representational similarity values obtained from this single-trial approach were 

extremely small but were statistically significant for both Fasttext (mean = 0.0007, 95% CI 

[0.0005 0.0009], sign test z = 4.80, p < .001) and ELMo (mean = 0.0015, 95% CI [0.0012 

0.0018], sign test z = 5.83, p < .001). The fact that they were orders of magnitude smaller than 

the values obtained for the averaged ERP data is not surprising given the greater noise level of 

the single-trial data. Unfortunately, our approach to computing the noise ceiling could not be 

used for this analysis because the same set of trials was not used for each participant (because of 

artifact rejection). However, the fact that the representational similarity values were significantly 

greater than zero, and that the relative ordering of the values for Fasttext and ELMo was the 

same as in the main analysis, demonstrates the feasibility of using this approach. 

Whereas word embeddings for Fasttext are independent of the context in which a word 

appears, ELMo generates a separate embedding for a given word depending on its context. In the 

analyses so far, we averaged the ELMo embeddings for a given word across the different 

contexts in which the word appeared. This was necessary because the ERPs for a given word 

were averaged across contexts. It also put ELMo and Fasttext on more equal footing. However, 

the single-trial analysis uses the individual instances of each word, with differences in context 

across these instances, which made it possible to use the corresponding context-specific ELMo 

word embeddings. When we used the context-specific ELMo embeddings, we found a mean 

representational similarity (Spearman rho) of 0.0022 (p < .001) between the EEG similarity 

matrix and the ELMo similarity matrix. This was slightly higher than the value of 0.0015 

observed when the word embeddings were averaged across contexts, suggesting that the 

contextual information captured by ELMo correspond with the contextual information used by 

the human brain. 

3.7. Time course analyses 

To see the time course of the relationship between the ML-NLP models and the neural 

responses, we conducted the RSA analysis separate for each time point, using only the scalp 

distribution information to construct the ERP similarity matrix. The results are shown in Figure 

6a, which also includes the lower and upper bounds of the noise ceiling. Just like the correlations 

for the entire waveform, these single-point correlations were greater for ELMo than for Fasttext. 

The model-ERP correlations were near zero prior to stimulus onset and then rose rapidly 

beginning at approximately 100 ms and peaking at approximately 250 ms. Note that small timing 

errors in our routine for inserting event codes at word onsets may have “smeared out” the time 

course somewhat and reduced our ability to detect short-latency effects. 

The time course results shown in Figure 6a may also be distorted by the baseline 

correction procedure that is a standard part of our ERP processing pipeline. This correction aims 

to eliminate low-frequency noise in the data by subtracting the mean voltage during the 500-ms 

prestimulus baseline period from each epoched EEG waveform. This procedure is usually 

essential for obtaining reliable ERPs, and it is based on the assumption that the prestimulus 

period contains only noise (Luck, 2014). However, that assumption is not valid in the present 
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study, because the baseline period contained ERP activity produced by the preceding words that 

was potentially predictive of the current word. Consequently, the baseline correction procedure 

may have artificially reduced the correlation between the representational similarity matrices for 

the ERPs and the ML-NLP models. Note that although the correlations were small during the 

baseline period, they were nonetheless statistically significant at many time points (see the 

horizontal lines at the top of Figure 6a), indicating that the baseline correction procedure did not 

entirely remove all information about the preceding words. 

To assess the influence of the baseline correction procedure, we repeated the time course 

analyses without baseline correction (relying only on the high-pass filter to attenuate low-

frequency voltage offsets). In other words, no baseline correction was applied to the waveforms 

that were used to create the ERP representational similarity matrices. As shown in Figure 6b, this 

resulted in lower correlations between the ERP data and the two models than observed in the 

baseline-corrected data. The noise ceiling was also reduced, consistent with the assumption that 

baseline correction was helpful in reducing noise. The magnitude of the correlations was 

reasonably high relative to this reduced noise ceiling. Interestingly, the representational 

similarity ramped up gradually toward the end of the baseline period when baseline correction 

was eliminated. This indicates that the brain activity elicited by the preceding words contained 

information that was predictive of the current word, which could occur many different levels 

(e.g., coarticulation, syntactic structure, semantic associations). 

4. Discussion 

This study used representational similarity analysis to compare the representational 

geometry of word representations in two ML-NLP models (which had been engineered to 

address practical problems and not to reflect human language processing) with the structure of 

word representations in the human brain. Although the two ML-NLP models were designed to 

solve similar problems and were trained with huge sets of natural English text, their 

representational similarity matrices were only moderately correlated with each other (Spearman 

rho = 0.49). When averaged across participants, the representational similarity matrix from the 

neural data exhibited correlations with each of the two models that were only moderately lower 

(0.30 for the ELMo-ERP correlation; 0.21 for the Fasttext-ERP correlation). Averaging 

similarity matrices across participants can be problematic (Ashby, 2019; Ashby et al., 1994), but 

the single-subject correlations were also reasonably strong relative to the noise level of the data. 

These results indicate that ML-NLP models of word embeddings—which were designed 

to solve practical problems such as information retrieval (Nalisnick et al., 2016), sentiment 

analysis (Shi et al., 2019), machine translation (Zou et al., 2013), and various language 

understanding tasks (Peters et al., 2018)—end up having a representational geometry that 

resembles that of the human brain. This is consistent with the hypothesis that any linguistic 

processing system that can successfully operate on a natural language will end up having a 

similar underlying representational structure (at least when considered at the abstract level of 

word-to-word similarities). Comparisons between language embedding spaces for different 

languages (Conneau et al., 2017; Lample et al., 2017) also support this hypothesis. Such a 

structure may be inevitable given the semantic relationships between the concepts represented by 

the words (especially for content words) and the syntactic structure of the language (especially 

for function words). For example, it is difficult to imagine how an English language processing 

system could be successful unless it treated “chair” as being more related to “table” than to 

“velocity” (or “the” as being more related to “a” than to “with”). Acoustic and phonemic 
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similarities may also play a role. If we assume that the human brain is well suited to processing 

natural human languages, this suggests that the best NLP systems of the future may have a 

representational structure that is isomorphic with that of the human linguistic processing system. 

Because the two ML-NLP models were only modestly correlated with each other, this 

created the possibility that each might explain unique variance in the ERP data. Semipartial 

correlations indicated that only the ELMo model explained significant unique variance in the 

ERP data. This suggests that the representational structure of ELMo is more similar to that of the 

human brain than is the representational structure of Fasttext.  

However, ELMo has an intrinsic advantage, because the embedding vector produced by 

ELMo for a given word depends on the local context of the word, whereas Fasttext produces 

context-independent embedding vectors. Because the ERPs were averaged over all instances of a 

given word in the two stories to achieve a reasonable signal-to-noise ratio, we also averaged the 

ELMo embeddings over all of the instances of these words prior to constructing the 

representational similarity matrix7. Nonetheless, the averaged ELMo embeddings did reflect the 

distribution of meanings in the same stories that were used to elicit the ERP responses, whereas 

Fasttext did not. In addition, when we conducted a single-trial analysis, we found that ELMo had 

a stronger representational link to the ERP data when we used the context-specific ELMo 

embeddings rather than context-independent, averaged ELMo embeddings. However, the single-

trial representational similarity values were very small, so this conclusion is tentative. 

Although our primary analyses combined the spatial and temporal features of the ERP 

data to construct the representational similarity matrices, we also tracked the time course of the 

representational similarity between the neural data and the two models. As can be seen in Figure 

6, the time-course of the similarity began ramping up at approximated 100 ms, peaked at 

approximately 250 ms, and was sustained for several hundred milliseconds before gradually 

declining. This time course fits with the timing of traditional ERP components that have been 

used to study lexical and semantic processing. In particular, the N200 family of components is 

sensitive to auditory word form information (Boudewyn et al., 2015; Connolly & Phillips, 1994; 

Diaz & Swaab, 2007), and the N400 component is sensitive to word-level associative and 

semantic information (Kutas & Federmeier, 2011; Swaab et al., 2012). The present effects may 

reflect, in part, the same neural systems that produce these ERP components, but this is difficult 

to determine from the present data. It is also worth noting that the early onset of the 

representational similarity suggests that acoustic or phonemic representations may be associated 

with the word embeddings of the ML-NLP models. 

A recent fMRI study of the cortical distribution of semantic features (Huth et al., 2016) 

used word embeddings to predict the BOLD response measured while participants listened to 

stories. To create a data-driven model of semantics, a simple model of word embeddings was 

constructed that counted the co-occurrence of a given word with every other possible word in a 

large corpus. Equal weight was given to word pairs separated by up to 15 words to emphasize 

semantic relationships and minimize syntactic influences on the embeddings. The vector of 

features for each word was then combined with the sequence of words in the stories to create a 

set of regressors for predicting the BOLD response. This procedure yielded highly detailed 

projections of four semantic dimensions (derived from principal component analysis) onto the 

cortical surface. Although both the present study and this prior study examined the relationship 

 
7 Given the low signal-to-noise ratio of the single-trial EEG data, it was not realistic to compare the separate ELMo 

representations for each individual word context to the corresponding single-trial EEG data. 
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between word embeddings and neural responses to natural language, the goals and analytic 

methods of the two studies were quite different. The prior study used a simple model of word 

embeddings that was intended to reflect human semantics, and the set of words was dominated 

by semantically rich content words. By contrast, the present study focused on the 100 most 

commonly occurring words, which were predominantly function words (see Table 1), and it 

focused on sophisticated models of word embeddings that were developed to solve applied NLP 

problems rather than to reflect human semantic relationships. In addition, whereas the goal of the 

prior study was to assess the tiling of semantic features across the cortical surface, the goal of the 

present study was to quantify the similarity between the representational structure of the ML-

NLP models and the human brain. Thus, the present study and the previous study provide 

complementary information. 

From another perspective, the representational similarity between the neural data and the 

word embedding models can be seen as an index of the isomorphism between the semantic map 

of the brain and the semantic structure of the embedding space. Frankland & Greene (2020) 

proposed that the brain could be using a grid-cell like system to represent meanings, resulting in 

a semantic map in the brain. However, unlike 2-D spaces that can be mapped to a 2-D cortical 

space, semantic maps have an undefined and high dimensional geometry. It is also very likely 

that the triangle inequality does not apply in the semantic map. For example, “rodent” and 

“keyboard” are both semantically similar to “mouse”, but they are very dissimilar with each 

other. Consequently, it would be difficult for a grid-cell like representation to capture the full 

extent of the semantic space.  RSA does not assume a 2-D representation and can therefore be 

used to assess the isomorphism between the semantic map of the brain and the complex, large-

dimensional semantic structure of the embedding space. 
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Figure 1. Conceptual overview of representational similarity analysis in a study with 100 

different words. (A) Computational model. Each word is fed into a computational model, which codes 

the word as a location in a multidimensional space. Only three dimensions are shown here, but most 

models have hundreds of dimensions. The similarity between two words can be quantified as the distance 

between their representations in this space. (B) Representational similarity matrix from the 

computational model. Each cell of the matrix represents the similarity between a given pair of words in 

the model. (C) Neural responses. In this example, the neural response to a word is the distribution of 

voltage values across scalp electrodes, but different kinds of neural responses can be used (e.g., the 

pattern of activity across voxels). The similarity between the neural responses to two words can be 

quantified as the correlation between the corresponding voltage distributions. (D) Representational 

similarity matrix from the neural data. Each cell of the matrix represents the similarity between the 

neural responses elicited by a given pair of words. The representational similarity between the model and 

the brain is quantified as the correlation between the matrix for the model and the matrix for the neural 
data. 

 



 

 
Figure 2. Overview of our procedure for computing representational similarity. For each word, 

the ERP waveforms at different scalp sites were concatenated together to make a single vector of voltage 

values. We then computed the correlation between these vectors for each pair of words to create an ERP 

representational similarity matrix. Finally, we computed the rank-order correlation between this matrix 

and the representational similarity matrices for the two models to estimate the representational similarity 

between the ERPs and the models. 



 

 
 

Figure 3. Grand average ERP waveforms, collapsed across all the function words or all the 

content words, at the midline electrode sites. Time zero is word onset. 

 



 

 
Figure 4. Representational similarity matrices for the Fasttext model, for the ELMo model, and 

for the ERP data (averaged across participants). The white lines separate the function words (left and top) 

from the content words (right and bottom). Within each of these categories, the words are ordered in 

terms of the number of instances within the two stories (with the same ordering from top to bottom as in 

Table 2). The similarity values have been converted to ranks (with a higher rank meaning greater 

similarity).  That is, the shading within each cell reflects the similarity between the pair of words for that 

cell, converted into a rank ordering. The purple arrows indicate columns that are obviously similar in the 

Fasttext and ELMo matrices, and the green squares indicate regions that are visibly similar across all 

three matrices. 

  



 

 

 
Figure 5. Simple correlations and semipartial correlations between the single-participant ERP 

similarity matrices and the Fasttext and ELMo similarity matrices. Each dot represents one participant, 

and the bars represent the mean across participants. The error bars show bootstrapped 95% confidence 

intervals. The horizontal band across the top shows the upper and lower bounds of the noise ceiling (Nili 

et al., 2014), which represents the greatest estimated correlation that could be expected given the noise in 

the data. 

  



 

 

 
Figure 6. Representational similarity between the ERP data and each of the two models for each 

time point of the ERP waveform. The representational similarity matrices for the ERP data were 

computed either with (a) or without (b) baseline correction of the ERP waveforms. Representational 

similarity was computed separately for each participant, and the mean across participants is shown here. 

The gray region shows the lower and upper bounds, respectively, of the noise ceiling. The horizontal line 

segments across the top indicate time periods in which the representational similarity values were 

significantly greater than zero (after correcting for the false discovery rate). 
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S1. Insertion of Event Codes at Word Onsets 

In the original study (Boudewyn & Carter, 2018), each sentence was stored as a separate 

audio file, and an event code was sent from the stimulus presentation system to the EEG 

recording system at the onset of each sentence. The original study was designed to examine the 

ERPs to a subset of words in relation to the attentional state of the participants. Therefore, the 

stories were periodically interrupted by questions asking the participants about their current 

attentional state. A total of 54 of these questions appeared across the two stories. Event codes 

were manually inserted into the data files offline to mark the onsets of content words in the 

sentences immediately preceding and following these attention questions. Event codes were 

inserted for 919 words in a total of 164 sentences. Word onset was determined by a combination 

of auditory inspection and visual inspection of the speech waveform by one of the authors 

(M.A.B.).  

In the present study, we were interested in the ERPs for all the words. Given that there 

were over 10,000 different word tokens, we used an automated process to insert event codes at 

the word onsets. Specifically, the audio file for a given sentence was fed into the Montreal 

Forced Aligner (McAuliffe et al., 2017), which is a well-validated tool for determining onset 

times from recordings of natural speech. The speech signal is converted into a set of acoustic 

features (mel-frequency cepstral coefficients), and these features are combined with a model 

pretrained on hand-labeled speech examples to provide estimates of word onsets for new speech 

inputs (taking into account coarticulation). 

We initially validated the results of this process by inspecting the segmentations of 

several sentences manually, and we found no obvious errors. We then compared the outputs with 

the hand-coded word onsets. On average, the error was -8.88 ms, meaning that the computed 

onsets were biased to be slightly earlier than the manually determined onsets. To quantify the 

variability of the automated onset estimates relative to the manually determined onsets, we took 

the absolute value of the error for each word token and computed the mean across tokens. The 

mean absolute error was 19.64 ms. Figure S1 shows the distribution of errors. 

We wrote custom Python code to take these word onset estimates and insert event codes 

into the EEG data files at the appropriate times, anchored by the start time of each audio file. We 

then excluded words that were shorter than 100 ms. 
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Figure S1: Errors of automatically generated word onsets relative to manually determined word 

onsets. Negative values indicate that the computed onset was earlier than the manually 

determined onset.. 
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S2. Effects of Averaging Similarity Matrices Across Participants 

Although it is possible to reduce noise in representational similarity matrices (RSMs) by 

averaging the single-participant RMSs together into a grand average RSM, this approach can 

lead to invalid conclusions. The mathematical issues are somewhat complex and are described in 

detail by (Ashby et al., 1994). Here, we provide concrete examples designed to provide an 

intuitively appreciation of how averaging RSMs can potentially lead to erroneous conclusions.  

Below, we provide RSMs for two example participants along with the average of the two 

RSMs and the RSM from a model. The correlation between Subject 1’s RSM and the model 

RSM is +.61, whereas the correlation between Subject 2’s RSM and the model is -.61. Taking 

the average of those single-participant correlations, one would correctly conclude that there is 

currently no evidence for a significant positive or negative relationship between the “average” 

participant’s RSM and the model.  

However, if one were to instead average across the subject RSMs to create an average 

RSM, the correlation between that average RSM and the model RSM would be r = +.61, 

potentially leading to the erroneous conclusion that the subject RSMs are positively related to the 

model RSM “on average”. 

 

Subject 1 RSM 

1 .25 .25 

.25 1 .3 

.25 .3 1 

  

Subject 2 RSM 

1 .4 .4 

.4 1 .3 

.4 .3 1 

 

Average of Single-Participant RSMs 

1 0.325 0.325 

0.325 1 0.3 

0.325 0.3 1 

 

Model RSM 

1 0.5 0.2 

0.5 1 0.15 

0.2 0.15 1 
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