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Abstract 
 

Physically salient objects are thought to attract attention in natural scenes. However, 

research has shown that meaning maps—which capture the spatial distribution of semantically 

informative scene features—trump physical saliency in predicting the pattern of eye moments in 

natural scene viewing. Meaning maps even predict the fastest eye movements, suggesting that 

the brain extracts the spatial distribution of potentially meaningful scene regions very rapidly. To 

test this hypothesis, we applied representational similarity analysis (RSA) to event-related 

potential (ERP) data. The ERPs were obtained from human participants (N = 32, male and 

female) who viewed a series of 50 different natural scenes while performing a modified 1-back 

task. For each scene, we obtained a physical saliency map from a computational model and a 

meaning map from crowd-sourced ratings. We then used RSA to assess the extent to which the 

representational geometry of physical saliency maps and meaning maps can predict the 

representational geometry of the neural response (the ERP scalp distribution) at each moment in 

time following scene onset. We found that a link between physical saliency and the ERPs 

emerged first (ca. 78 ms after stimulus onset), with a link to semantic informativeness emerging 

soon afterward (ca. 87 ms after stimulus onset). These findings are in line with previous evidence 

indicating that saliency is computed rapidly, while also indicating that information related to the 

spatial distribution of semantically informative scene elements is computed shortly thereafter, 

early enough to potentially exert an influence on eye movements. 
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Significance Statement 

Attention may be attracted by physically salient objects, such as flashing lights, but humans must 

also be able to direct their attention to meaningful parts of scenes. Understanding how we direct 

attention to meaningful scene regions will be important for developing treatments for disorders 

of attention and for designing roadways, cockpits, and computer user interfaces. Information 

about saliency appears to be extracted rapidly by the brain, but little is known about the 

mechanisms that determine the locations of meaningful information. To address this gap, we 

showed people photographs of real-world scenes and measured brain activity. We found that 

information related to the locations of meaningful scene elements was extracted rapidly, shortly 

after the emergence of saliency-related information. 
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Introduction 

Visually guided behavior relies on rapid prioritization of incoming visual information. 

The precise mechanisms by which our brains perform this prioritization, however, remain 

unclear. Two distinct theoretical perspectives have emerged, one emphasizing physical saliency 

and the other emphasizing cognitive guidance. Physical saliency theories propose that attention 

is drawn to locations that differ from their surroundings in low-level features (Koch and Ullman, 

1985; Itti et al., 1998; Itti and Koch, 2001; Harel et al., 2007; see Veale et al., 2017 for a review). 

By contrast, cognitive guidance theories propose that, from the very earliest viewing moments, 

attention is instead guided by the distribution of semantic or task-relevant content within scenes 

(Wolfe, 1994; Henderson, 2003, 2017; Hayhoe and Ballard, 2005). 

To distinguish between these possibilities, recent studies have compared physical 

saliency maps (maps indicating physical saliency at each location) with meaning maps (maps 

indicating semantic informativeness levels at each location; Henderson and Hayes, 2017). 

Although saliency is thought to have largely equivalent effects on covert and overt attention, 

most research on models of saliency have focused on overt shifts of gaze. Several recent studies 

have shown that eye movement patterns are predicted better by meaning maps than by physical 

saliency (Henderson and Hayes, 2017; Henderson et al., 2019). This advantage has been 

observed across multiple tasks, including visual search (Hayes and Henderson, 2019), simple 

free viewing (Peacock et al., 2019a), and scene and action description (Henderson and Hayes, 

2018; Rehrig et al., 2020). The predictive advantage of meaning maps is present even when the 

task is to count the number of physically salient scene regions (Peacock et al., 2019b). 

Although one might expect that information related to meaning would be extracted 

relatively slowly, the explanatory advantage of meaning maps is often present from the very first 
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saccade (Hayes and Henderson, 2019; Peacock et al., 2020). This suggests that meaning-related 

computations arise quickly enough to overcome physical saliency in the control of attention.  

Although the representation of physical saliency emerges very rapidly in nonhuman 

primates (e.g., superior colliculus: 65 ms, White et al., 2017, V1: 90-100 ms, Li et al., 2006), less 

is known about when the brain determines which regions are likely to contain meaningful 

objects. Here, we considered two competing possibilities. First, information related to semantic 

informativeness might be extracted substantially later than physical saliency-related information, 

reflecting the additional computations involved in computing meaning. For example, previous 

research suggests that it takes the human brain approximately 150 ms to complete the extraction 

of meaning from complex scenes (Thorpe et al., 1996; Fabre-Thorpe et al., 2001; Gordon, 2004). 

However, it may be sufficient to determine that a location is likely to contain meaningful 

information before shifting covert or overt attention to that location, which is presumably faster 

than computing the meaning itself at that location. This raises the alternative hypothesis that 

brain extracts the locations of semantically informative regions almost as rapidly as it extracts 

saliency-related information. 

To distinguish between these alternatives, we assessed the onset of information related to 

physical saliency maps and meaning maps in neural responses elicited by photographs of real-

world scenes, leveraging the high temporal precision of ERPs. Subjects viewed a series of 50 

different scenes while performing a modified 1-back task (see Figure 1).  
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Figure 1. Example stimulus sequence from the experimental task. The target stimuli were 

photographs of real-world scenes presented at the center of the screen. Subjects were tested on a 

randomly selected 10% of trials. In each test, four quadrants from four different images (one 

matching the immediately preceding scene, three selected at random from the other task scenes).  

Because we were examining the processes that precede covert and overt shifts of 

attention—and because eye movements create large electrical artifacts—subjects maintained 

central fixation throughout the task. We used representational similarity analysis (RSA) to link 

the ERP scalp distribution at each moment in time with computationally generated maps of 

physical saliency (Harel et al., 2007) and crowd-sourced meaning maps (Henderson & Hayes, 

2017; see Figure 2). We predicted that representational similarity between the ERPs and meaning 
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maps would arise shortly after representational similarity between the ERPs and physical 

saliency maps, consistent with the fact that the fastest eye movements are better explained by 

semantic informativeness than by physical saliency. 

 

Figure 2. a, Example scene along with its corresponding physical saliency map and meaning 

map. The blue rectangles were not present in the scene but were added here to highlight specific 

regions in each map type. In this example, the region highlighted on the left is high in physical 

saliency (being brighter than the surrounding regions) but low in meaning (being largely 

homogenous). By contrast, the region highlighted on the right is high in semantic saliency (as it 

contains easily identifiable objects) while being relatively low in physical saliency. b, Examples 

of the patches used to construct the meaning maps and their ratings. Subjects viewed and rated 

the meaningfulness of each individual patch in isolation.  

Materials and Methods 

Participants 

 Thirty-two college students (17 Female, 15 male) between ages 18 and 30 with normal 

or corrected-to-normal visual acuity participated in this study for monetary compensation. Given 
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the small number of prior ERP studies using RSA, and the lack of any ERP RSA studies of this 

specific issue, it was difficult to conduct a conventional power analysis to determine an 

appropriate sample size. Instead, we made an initial choice of N=32 by doubling (out of an 

abundance of caution) the N=16 used in prior ERP studies from our lab using other multivariate 

pattern analysis methods (Bae and Luck, 2018, 2019). We then conducted simulations (10000 

runs, see https://osf.io/zg7ue/?view_only=5ae3123a6edc4321a277023202953c52/ for code) 

using this N=32 sample size and found that we could detect 80% of the time points exhibiting a 

significant effect in our target analysis with this target N. Specifically, we created simulated data 

with a small representational similarity effect (r = .05) that extended for 100 ms within a 500 ms 

analysis window. On average, our method was able to detect significant effects for 80% of the 

time points within this 100 ms period after correcting for multiple comparisons over the 500 ms 

analysis window (using the analytic approach described in the statistical analysis section). From 

this, we concluded that N=32 was sufficient for the present study. All study procedures were 

approved by the University of California-Davis Institutional Review Board.  

Stimuli and Task 

All task elements were presented in MATLAB (MathWorks) using PsychToolbox 

(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007; all scene images are available at 

https://osf.io/ptsvm/). The stimuli were presented on an LCD monitor (HP ZR2440W) with a 

gray background (31.2 cd/m2) at a viewing distance of 100 cm. The monitor presentation delay 

was measured (24 ms), and all timing values were adjusted accordingly.  

The experimental task is illustrated in Figure 1. Throughout the task, an empirically 

optimized fixation symbol (Thaler et al., 2013) was continuously present in the middle of the 

screen. Because the goal of the present study was to examine processes that precede both covert 
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and overt shifts of attention, subjects were instructed to maintain central fixation on this symbol 

throughout the task.  

The primary stimuli consisted of 50 digitized photographs of real-world scenes 

(Henderson and Hayes, 2017, 2018; Henderson et al., 2020). Sample images are presented in 

Figures 2 and 3, and all of 50 of the images are available in a public repository at 

https://osf.io/zg7ue/?view_only=5ae3123a6edc4321a277023202953c52. Mean local contrast 

energy and spatial coherence statistics (Groen et al., 2013) for these images were also calculated 

and are provided in the repository. Each image subtended 8 × 6 degrees of visual angle. On each 

trial of the task, a scene was presented for 200 ms, followed by a 1300 ms interstimulus interval. 

The brief stimulus duration was designed to discourage eye movements. 

 

https://osf.io/zg7ue/?view_only=5ae3123a6edc4321a277023202953c52
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Figure 3. Examples of three scenes used in the present study and their corresponding physical 

saliency maps and meaning maps. The blue rectangles and grid were not present in actual scenes 

but were added here to highlight correspondences between the maps and the scenes.  

To promote general attentiveness, subjects were instructed to remember the most recent 

scene, and their memory was tested after a randomly selected 10% of trials. As illustrated in 

Figure 1, each test display contained four options, one matching the immediately preceding 

scene and the others selected at random from the other 49 scenes. Each option consisted of one 

quadrant of a given scene so that subjects could not perform the task by focusing on a narrow 

region when encoding the scenes. For example, if participants focused narrowly on the center of 

the house scene in Figure 1, they would have difficulty determining which of the four test 
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options matched this scene. The position of the selected quadrant was selected at random, with 

all four options being extracted from the same quadrant (e.g., all four from the upper left 

quadrant of the scenes). Each option subtended 3.2 × 2.4° and was embedded within a 12.9 × 

9.7° black region. The position of a given option relative to the black background corresponded 

with the quadrant’s position in the original scene. Subjects were instructed to indicate which of 

the four options matched the immediately preceding scene by pressing one of four trigger buttons 

on a gamepad with the index and middle fingers of the left and right hands, mapped to the 

corresponding four locations in the test display. Note that this task was designed to minimize 

task-based categorization or response-related activity until the test display so that these factors 

would not influence the RSA results.  

Before the main task began, subjects were required to achieve at least 75% accuracy in a 

50-trial practice block. This block was repeated until the required performance level was 

achieved. The images in this practice block were not used in the main task. 

In the main task, the trials were divided into a series of 32 blocks, each containing one 

trial with each of the 50 scenes. Thus, each of the 50 scenes was presented 32 times for each 

subject, yielding a fully balanced within-subjects design. Image presentation order was 

randomized within each block with the restriction that the last image in one block could not be 

the first image in the next block. Participants were given a break after every block.  

Generation of Physical Saliency Maps and Meaning Maps 

The term saliency can be defined in different ways. Following in the tradition of Koch 

and Ullman (1985) and Itti and Koch (2000, 2001), the present study uses the phrase physical 

saliency to refer to information about saliency that is computed by early visual cortex on the 

basis of low-level physical features in the sensory input. With this aim in mind, we selected the 
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Graph-Based Visual Saliency (GBVS) Toolbox as our model of physical saliency given its 

biological plausibility (Harel et al., 2007) along with its track record of performance (Walther 

and Koch, 2006; Nuthmann et al., 2017).  

We applied the GBVS algorithm to our scenes using the default parameter settings 

(saliency map size: 32; selected channels: color, orientation, intensity; Gabor angles: 0, 45, 90, 

135; contrast width: 0.10, blur fraction 0.02). The GBVS method first extracts low-level color, 

orientation, and contrast features vectors from an image using biologically inspired filters. These 

features are then used to compute activation maps for each unique feature type. Subsequently, 

these activation maps are normalized and additively combined to form a single global saliency 

map. Finally, the resulting map is blurred using a Gaussian kernel.  

Akin to how physical saliency maps represent physical saliency at each location in an 

image, meaning maps aim to quantify the extent to which meaningful information is present at 

each location. Meaning maps for the scenes used in the present study were previously generated 

by Henderson & Hayes (2017). In the map generation process, each scene (768 x 1024 pixels) 

was decomposed into a series of partially overlapping and tiled circular patches at two spatial 

scales (fine : patch diameter of 87 pixels, 300 patches per scene;  coarse : patch diameter of 205 

pixels. 108 patches per scene; see  https://osf.io/suzex/ for full details). An example scene and 

patches from that scene are shown in Figure 2.  

These patches were then evaluated by 204 Amazon Mechanical Turk subjects who rated 

how informative or recognizable each patch was on a 6-point Likert scale. The subjects viewed 

each patch in isolation, without any context (e.g., they never saw the intact scenes). The patches 

from multiple scenes were intermixed and presented in random order. Thus, the ratings reflect 

the extent to which a given patch contains meaningful information, not the specific meaning of 

https://osf.io/suzex/
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that patch or the relationship of that patch to the rest of the scene. Each unique patch was then 

rated by three unique raters. Given the substantial spatial overlap between patches, any given 

point in a scene typically received dozens of ratings. A meaning map was generated for each 

scene by averaging the rating data at each spatial scale separately at the pixel level, then 

averaging the spatial scale maps together, and finally smoothing the average rating map with a 

Gaussian filter (i.e., σ =10, FWHM= ~23 px; see https://osf.io/654uh/ for the image processing 

code).  

Given that images in this study were centered on the target fixation point, it is important 

to account for the expected center bias in the processing of each scene in both the GBVS and 

meaning maps. Maps from the GBVS model are intrinsically center-biased, with the center-bias 

being an emergent property of the distribution of graph node locations used to compute the 

image maps (Harel et al., 2007). To implement the same center-bias weighting to the meaning 

maps, the center-bias weights included in the GBVS package were applied to the meaning maps 

via pointwise multiplication. Through this procedure, the weighting of map features across the 

two map types was effectively standardized. Examples of these maps are shown alongside the 

original scene images in Figure 3. 

EEG recording and preprocessing 

Continuous voltages were recorded from 64 electrodes using a Brain Products 

ActiCHamp recording system (Brain Products GmbH). Electrodes were located at a broad set of 

59 scalp sites (AF3, AF4, AF7, AF8, FC1, FC2, FC3, FC4, FC5, FC6, FP1, FP2, F1, F2, F3, F4, 

F5, F6, F7, F8, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, P1, P2, P3, P4, P5, P6, 

P7, P8, P9, P10, PO3, PO4, PO7, PO8, T7, T7, TP7, TP8, O1, O2, Fz, FCz, Cz, CPz, Pz, POz, 

and Oz), at the left and right mastoids, and at three electrooculogram (EOG) sites. The two 
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horizontal EOG electrodes were placed lateral to the external canthi and were used to record 

horizontal eye movements; the vertical EOG electrode was placed below the right eye and was 

used to record eyeblinks and vertical eye movements (see Farrens et al., 2020 for a 

comprehensive description of the electrode application and recording procedures). Electrode 

impedances were maintained at <15 kΩ. All signals were recorded single-ended with a 

customized version of the PyCorder EEG recording software and then referenced offline. The 

EEG was filtered online with a cascaded integrator-comb antialiasing filter (half-power cutoff at 

130 Hz) and digitized at 500 Hz. 

The EEG preprocessing began by referencing the scalp EEG to the average of the left and 

right mastoid sites. A bipolar horizontal EOG derivation was then computed as the difference 

between the two horizontal EOG electrodes, with a vertical EOG derivation computed as the 

difference between Fp2 and the vertical EOG electrode. All the signals were then bandpass 

filtered (noncausal Butterworth impulse response function, DC offset removed, half-amplitude 

cutoffs at 0.1 and 30 Hz, 12 dB/oct roll-off) and resampled at 250 Hz. Portions of EEG 

containing large muscle artifacts or extreme voltage offsets (identified by visual inspection) were 

removed. 

Independent component analysis (ICA) was then performed on the retained continuous 

EEG for each subject to identify and remove components that were associated with blinks (Jung 

et al., 2007) (Jung et al., 2000) and eye movements (Drisdelle et al., 2017). The criterion for 

excluding an ICA component was the consistency between the shape, timing, and spatial location 

of the component compared with the HEOG and VEOG signals. The data for each channel 

(excluding HEOG and VEOG) were then reconstructed from the other ICA components. 

Individual trials were rejected if the peak-to-peak voltage was >200 μV in any 200 ms window in 
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any electrode, or if a blink or eye movement (defined as a step-like voltage change; see Luck, 

2014)) was detected in the uncorrected HEOG or VEOG signals between 200 ms prestimulus 

and 200 ms post-stimulus (and might therefore impact the perception of the stimulus).  

The ICA-corrected EEG signals were then segmented for each trial from -500 to +1500 

ms relative to the onset of the target scenes. Epochs preceded by test trials were discarded to 

reduce trial-by-trial variability. The retained trials were then baseline corrected using the mean 

voltage from -500 to 0 ms, and the averaged ERP waveform was computed for each of the 50 

scenes. Note that the key experimental effects occurred within 200 ms of stimulus onset, 

minimizing any concern that residual EOG activity or secondary effects of eye movements might 

have impacted the results. Moreover, there was little motivation for subjects to move their eyes 

in a scene-dependent manner because the task required perceiving the entirety of each scene, the 

scenes were centered at the fixation point, and the scenes terminated after 200 ms. Additional 

analyses are provided in the Results section to demonstrate that eye movements had little or no 

impact on the RSA findings. 

Statistical Analysis 

Representational Similarity Analysis (RSA: Kriegeskorte et al., 2008) was used to link 

the ERPs with the physical saliency and meaning maps. RSA makes it possible to compare 

multiple distinct measurement spaces for a set of stimuli, in this case ERP topographies and the 

spatial distribution of saliency and meaning. RSA is widely used in fMRI research to assess the 

correspondence between computational models and the pattern of activation across voxels, and it 

solves the fundamental problem of linking data modalities that have intrinsically different 

measurement spaces. Specifically, the RSA approach abstracts away from the activity patterns 

themselves to compute, for each measurement modality of interest, representational similarity 
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matrices (or complementary representational dissimilarity matrices) which represent the overall 

pattern of similarity observed between the activity patterns produced by a set of stimuli.  

For example, if we had conducted an fMRI experiment in which we showed an observer 

50 different scenes, we could take the pattern of BOLD activation across the voxels in visual 

cortex for each scene and then compute the correlation between the pattern of activation for each 

pair of scenes. This would yield a 50 × 50 correlation matrix. A matrix calculated in this manner 

is termed a representational similarity matrix (RSM) because each cell of the matrix indicates the 

similarity between the representations of a given pair of stimuli. We could then take those same 

scenes and construct another 50 × 50 correlation matrix in which each cell contains the 

correlation between the maps from a given pair of images (correlated at the pixel-by-pixel level). 

Each of these RSMs would provide information about the representational geometry of the 

system that produced it. In other words, each RSM indicates how similar or dissimilar different 

scenes are with regard to (1) the fMRI voxel patterns they evoke and (2) the outputs they 

produced in the model. 

By assessing the relationship between these two RSMs (using a rank order correlation to 

avoid assuming linearity), we could assess the relationship between the representational 

geometry of the two measurement spaces. In other words, the correlation between the RSMs 

indicates the degree to which stimuli evaluated as being similar/dissimilar in one system are 

considered similar/dissimilar in the other. Only the lower or upper triangle of each RSM is used 

in computing this correlation (because the upper and lower triangles are mirror images of each 

other, and the cells along the diagonal always have values of 1). A rank order correlation was 

selected here as it provides a robust method that does not dependent on the assumption of a 

linear relationship between the true similarities produced by the systems underlying the RSMs 
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(Diedrichsen and Kriegeskorte, 2017). Furthermore, there is reason to believe that a monotonic 

transform best accounts for the expected effect of the activity-pattern noise of given system on 

its RSM (Kriegeskorte et al., 2008).  

In the present study, we used the voltage pattern across electrode sites at a given latency 

rather than the pattern of BOLD activation across voxels to construct the neural RSMs. This 

provides much better temporal resolution because the EEG is a measurement of the actual 

extracellular potentials produced by the neurons, with zero delay (but spatially blurred by the 

brain, meninges, skull, and scalp). We applied RSA to the averaged ERPs in a three-step process. 

First, for the ERP data from a given subject, a separate RSM was computed at each moment in 

time relative to stimulus onset. Each cell in one of these RSMs represents the similarity in scalp 

distribution between the ERPs elicited by two of the scenes at that moment in time. Second, 

RSMs were computed for the saliency and meaning maps; these RSMs were identical across 

subjects. Third, the relationship between the ERP and saliency\meaning RSMs were estimated 

using rank regression, separately for each subject. All reported p-values are two-tailed unless 

otherwise specified. 

To take full advantage of the ERP technique’s temporal resolution, we computed a 

separate ERP RSM at each time point for each subject. We began by taking the scalp distribution 

of the averaged ERP for a given scene and storing it as a vector of 59 voltages (i.e., a list with 

one voltage for each electrode). To represent the similarity between the scalp distributions for 

two scenes at a given time point, we computed the Pearson r correlation between the ERP scalp 

distribution vectors for those two scenes. This was done separately for each pair of scenes, 

yielding a 50 × 50 RSM for each time point. These computations were performed independently 

at each time point for each subject to avoid representational geometry distortions associated with 
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the averaging of distance data (Ashby et al., 1994). We repeated this process for each time point 

in the 2000-ms ERP epoch (500 time points at 4 ms per sample), producing 500 different 50 × 50 

ERP RSMs for each subject. Note that we used the Pearson r correlation between scalp 

distributions as our measure of similarity because it quantifies similarity in the spatial pattern of 

the scalp distribution, disregarding differences in overall amplitude. 

 For the saliency map RSMs, we began by reshaping each 2-dimensional saliency map 

(one saliency value per pixel) into a single 1-dimensional vector (list) of saliency pixel values. 

We then computed the Pearson r correlation between the vectors for a given pair of scenes to 

represent the saliency-based similarity between those scenes. This yielded a 50 × 50 saliency 

RSM. This process was repeated for the meaning maps to produce a 50 × 50 meaning map RSM. 

Figure 4 presents the physical saliency and meaning map RSMs alongside an example ERP RSM 

from one recording time point from a single subject.  

 

Figure 4. Representational similarity matrices (RSMs) for the physical saliency and meaning 

maps, as well as an example RSM from the event-related potential (ERP) data (drawn from a 

single subject from 100 ms post-stimulus onset). The ordering of items in each matrix is identical 

and corresponds to the arbitrary numbering assigned to each scene in the experimental task. 

Similarity values are presented in Pearson r units, with the shading in each cell reflecting the 

computed similarity between a pair of scenes. 
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When choosing the 50 scenes for this study, we intentionally selected scenes in which the 

physical saliency and meaning maps were not overly similar (Pearson r < .50). To assess the 

degree of correlation between the saliency and meaning RSMs, we computed the Spearman rho 

rank-order correlation between them, with a permutation test (10000 iterations) to assess 

statistical significance. Consistent with our selection criteria, we found that the physical saliency 

and meaning map RSMs were only modestly correlated (rho = 0.243, p = .007).  

To assess the link between the ERPs, physical saliency maps, and the meaning maps, a 

rank regression procedure (Iman and Conover, 1979) was used to regress the ERP RSMs onto 

the physical saliency and meaning map RSMs. The estimated parameters of interest were the 

semipartial correlations between the rank-ordered ERP RSMs and the rank-ordered saliency and 

meaning RSMs. These semipartial correlations quantify how much of the variance in the 

representational geometry of the neural activity (the ERP RSMs) is uniquely accounted for by 

the representational geometry of the saliency and meaning maps (the saliency and meaning 

RSMs). In other words, variance in the ERP RSM that was explained by the physical saliency 

map RSM was partialled out when examining the correlation between the ERP RSM and the 

meaning map RSM, and vice versa. This approach allows us to examine the unique 

representational contribution of each source of information with regard to the ERP response. 

This procedure was repeated independently for each of the 500 timepoints for each of the 32 

unique subjects, resulting in two sets of separate 32 semipartial correlations (one for each 

subject) at each time point for physical saliency maps as well as for meaning maps. 

Note that we used parametric (Pearson) correlations to assess the similarity between the 

scalp distributions when constructing the RSMs, because different scalp distributions from the 

same subject can be directly related to each other. However, we used nonparametric (rank order) 
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correlations to assess the similarity between the ERP and saliency RSMs, because these RSMs 

come from different sources of data that may not be linearly related. 

Given that our hypotheses focused on sensory/perceptual activity, our analytic window 

focused on the 500 ms period following stimulus onset. Negative RSA correlations are typically 

uninterpretable and were treated as noise. We therefore used a one-tailed Wilcoxon sign-rank test 

against zero to determine whether the average of the 32 single-subject semipartial correlations at 

a given time point within the analytic window was significantly greater than zero. This was done 

separately for the physical saliency and meaning map RSMs. A false-discovery rate correction (q 

= 0.05) was then applied to each set of saliency and meaning p-values as an adjustment for 

multiple comparisons (Benjamini and Yekutieli, 2001) 

Data and Code Accessibility 

All EEG preprocessing methods were implemented in MATLAB using the open-source 

EEGLAB (Delorme and Makeig, 2004) and ERPLAB (Lopez-Calderon and Luck, 2014) 

toolboxes. The EEG data, experimental control scripts, EEG preprocessing scripts, and in-house 

custom MATLAB functions that implement the RSA analyses are available at 

https://osf.io/zg7ue/?view_only=5ae3123a6edc4321a277023202953c52 whereas the meaning 

maps used in this study are available at https://osf.io/ptsvm/. 

Results 

Behavioral Results 

The mean accuracy across subjects for the behavioral task was 86% (SD = 9.68), with a 

mean response time of 2.22 seconds (SD = 0.72).  

Representational Similarity Time-Course Analyses 
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Figure 5A shows the representational similarity (semipartial rank correlations) between 

the ERP data, the physical saliency map RSM, and the meaning map RSM within the analytic 

window. Values that were significantly greater than chance (after correction for multiple 

comparisons) are indicated using horizontal lines. In general, the representational similarity 

values rose above chance rapidly after scene onset, with a slightly later onset for meaning than 

for saliency. The representational similarity was significantly above chance from 84 to 112 ms 

for saliency and from 100 to 120 ms for meaning. Saliency also exhibited a second period of 

significant representational similarity from 152 to 248 ms. We would like to stress that these are 

semipartial correlations, in which variance explained by saliency maps was partialled out of the 

meaning map values and vice versa. Thus, the data in Figure 5 reflect the unique contribution of 

each map type. 

Figure 5b presents the RSA results for the full epoch, along with the noise ceiling, which 

reflects the highest representational similarity values that would be expected given the noise in 

the ERP data. The lower and upper bounds of the noise ceiling were estimated independently for 

each time point using the technique described by Nili et al. (2014). Specifically, the upper bound 

was estimated by computing the correlation between a given subject’s ERP RSM at a specific 

time point and the grand average of the ERP RSMs across all subjects at that time point and then 

averaging the correlations across subjects. The lower bound was estimated using a similar 

approach, except that the grand average RSM used for the correlation with a given subject 

excluded that subject.  
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Figure 5. a, Representational similarity timecourse between the event-related potential (ERP) 

data (i.e., the ERP representational dissimilarity matrices computed from all scalp electrodes) 

and each of the two map types (saliency and meaning) from -200 prestimulus to 500 ms post-

stimulus. Representational similarity was computed separately for each participant, with the 

mean across participants being shown here. The horizontal line segments across the top indicate 

time periods in which the representational similarity values were significantly greater than zero 

(p < .05 correcting for the false discovery rate). b, Full timecourse of the representational link 

shown in panel a. The upper and lower edges of the gray region denote the upper and lower 

bound estimates of the estimated noise ceiling (i.e., the highest expected observed correlation) of 

the ERP data. c, Jackknifed mean onset latency for physical and semantic saliency in the ERP 

data (error bars indicate the jackknife-corrected standard error). 
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Onset latencies for the RSA waveforms were estimated using the fractional onset latency 

technique (Hansen & Hillyard, 1980; Luck, 2014) in ERPLAB. In this approach, the peak value 

is first determined to normalize for differences in magnitude. Then, the onset latency is defined 

as the time point at which the value reaches 50% of the peak value. Simulations have shown that 

this approach provides an accurate and precise metric of onset latency (Kiesel et al., 2008). 

These measurements were obtained using the jackknife approach (Miller et al., 1998; Ulrich and 

Miller, 2001; Kiesel et al., 2008). Because jackknifing increases precision, a spline interpolation 

algorithm was applied to the RSA waveforms to provide a 1-ms measurement precision (Luck, 

2014).  

Figure 5c presents the estimated onset latencies for the physical saliency map RSA 

waveform (mean = 77.88 ms, SE = 3.10) and the meaning map RSA waveform (mean = 87.02 

ms, SE = 4.25). We then compared the onset latencies of these peaks using a jackknife-adjusted 

paired t test (Miller et al., 1998). The observed difference in latency (mean difference = 9.14 ms, 

SEM = 3.96,) between these onset latencies was statistically significant (jackknifed-adjusted t = 

2.31, p = .027). Thus, information related to the spatial distribution of physical saliency within 

the scenes was present in the neural responses quite early, followed approximately 10 ms later by 

information related to the spatial distribution of meaningful scene features. 

To put these latencies into context, Figure 6 shows the ERP waveforms from a set of 

representative electrode sites over visual cortex. The earliest ERP responses began at 

approximately 75 ms, which was close to the onset time of the representational similarity 

waveform for physical saliency. Thus, physical saliency-related information was present from 

near the beginning of the cortical activity that could be detected on the scalp, with 

meaningfulness-related information following rapidly. 
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Figure 6. a, Grand average event-related potentials (ERPs), collapsed across scenes and subjects, 

at nine different electrode sites. b, Mean global field power (Skrandies, 1990) collapsed across 

scenes and subjects. Time zero is the onset of the scene in all waveforms. c, Grand average ERPs 

for all scenes, collapsed across subjects at nine different electrode sites. The grand average 

waveform is highlighted in black in each panel.  
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Ruling Out Eye Movement Confounds 

Although subjects were instructed to maintain central fixation, and we rejected trials with 

clear eye movements and used ICA to correct for any remaining eye movements, it is possible 

that some small eye movements escaped rejection and correction, varying systematically across 

scenes. The initial RSA effects were too early to have been a result of such scene-driven changes 

in eye position, but the later effects may have been influenced by eye movements. 

To assess this possibility, we repeated our analyses with ERP RSMs computed in two 

ways. First, we computed RSMs using the ICA-corrected HEOG and VEOG channels that were 

excluded during the construction of the original ERP RSMs (see Figure 7a). If residual EOG 

activity that survived correction drove the main RSA results, then these RSA results should be 

even clearer if we limit the RSA analyses to the channels where these signals are largest. Second, 

we computed RSMs from ERPs reconstructed using only the ICA-components associated with 

ocular activity (i.e., the components that were removed from the data during the preprocessing 

phase), eliminating all sources of brain activity captured by the other ICA components (Figure 

7b). These ocular ICA components should isolate eye movement signals, allowing us to see if 

they contain information that can be predicted from the physical saliency and meaning maps. As 

shown in Figure 7, neither of these ocular RSMs exhibited a statistically significant relationship 

to the physical saliency or meaning map RSMs during the analytic time window. Thus, it is 

unlikely that the main ERP RSA results were substantially influenced by eye movements. 
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 Figure 7.  a, Representational similarity timecourse from -200 prestimulus to 500 ms post-

stimulus between each of the map types (saliency and meaning) and the event-related-potential 

(ERP) data, but using only the horizontal and vertical electrooculogram channels (after artifact 

correction). This makes it possible to estimate the effects of any residual eye movement activity. 

b, Representational similarity timecourse when the ERP data at each electrode site were 

computed from the independent components flagged as being generated by ocular artifacts. This 

makes it possible to assess whether eye movements were systematically related to the physical 

saliency and meaning maps. In both panels, representational similarity was computed separately 

for each participant, and the mean across participants is shown here. The upper and lower edges 

of the gray region denote the upper and lower bound estimates of the estimated noise ceiling 

(i.e., the highest expected observed correlation). 

Topographical Assessment 

The RSA time course analyses used all 59 scalp sites, providing no information about 

which sites were most important in producing the observed effects. To obtain information about 

scalp topography, we utilized a leave-one-electrode-out approach. Specifically, we repeated the 

rank regression procedure 59 times, each time leaving out one of the 59 electrodes when 

constructing the ERP RSMs. We then examined how much the representational similarity values 

dropped when a given electrode was excluded relative to when all 59 electrodes were included, 

using the magnitude of the drop as a metric of the contribution of that electrode to the 
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representational similarity link. As before, these changes were computed at the single-subject 

level before being averaged across participants. Given the large number of electrodes and the 

high intercorrelations between them, we expected that the contribution from each individual 

electrode would be small but that the pattern across electrodes would be informative. These 

values were used to construct scalp topographies in which the value at each electrode was set to 

the magnitude of its unique contribution to the rank order relationship between a given map type 

and the ERP RSM at a single point in time. A biharmonic spline interpolation was applied to all 

maps to facilitate visualization. This leave-one-out approach was used to produce topographic 

maps at each time point between 72 and 108 ms, encompassing the earliest ERP components as 

well as the initial portion of the physical saliency and meaning map RSMs. 

As shown in Figure 8, the resulting topographies had a focus over visual cortex for both 

the saliency and meaning RSA data, with a slight lateralization to the right. Importantly, neither 

of these topographies included a substantial contribution from electrodes close to the eyes. Given 

the complex relationship between ERP generator locations and scalp electrodes (Nunez et al., 

2006), and the large number of steps between the data and these topographic maps, it would be 

inadvisable to draw any strong conclusions from the topographies shown in Figure 8. 

Nonetheless, they do provide some descriptive information about the electrode sites that 

contributed most to the observed RSA effects, showing that electrodes over posterior midline and 

right lateral regions of visual cortex played a relatively strong role. Moreover, electrodes near the 

occipital pole showed a strong effect for the meaning map RSA data, suggesting that posterior 

visual areas may have played an important role in the meaning map RSA effects (Henderson et 

al., 2020). This is consistent with recent fMRI evidence indicating that information coded by 
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GBVS maps is more strongly represented in occipital cortex and information related to meaning 

maps is more strongly represented in more anterior visual areas (Henderson et al., 2020). 

Supplementary Analyses 

 Our main analyses used semipartial correlations to assess the unique ability of the 

saliency maps to predict the ERP data after partialling out variance explained by the meaning 

maps and the unique ability of the meaning maps to predict the ERP data after partialling out 

variance explained by the saliency maps. However, it is possible that saliency and meaning also 

interact, which would not be captured by our primary analyses. To assess this possibility, we 

conducted an exploratory analysis in which we added an interaction term for the two map types 

to our rank regression analysis. This was calculated by assessing the effect size and significance 

of an interaction term computed via multiplying the centered meaning and saliency map RSM 

rank values. This analysis showed no evidence of an interaction between the two map types at 

any point in time, with near-zero values at all time points (peak rho = .017) and no statistically 

significant effects after FDR correction.  

 In our main analyses, we used the Pearson r correlation coefficient to quantify the 

similarity in ERP scalp distributions for each pair of scenes, which assesses similarity in the 

pattern of activity over the scalp independent of the amplitude of the ERP response. We 

therefore conducted an additional analysis to determine whether the overall amplitude of the 

ERP response has a representational link to the saliency and meaning maps. In this analyses, we 

quantified the magnitude of the ERP response as the global field power (GFP), which is the 

standard deviation of the voltage across electrode sites (Skrandies, 1990). This approach 

aggregates the data from all electrode sites into a single magnitude value at each timepoint. The 

difference in GFP between a given pair of scenes was used to quantify the (dis-) similarity 
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between the scenes. We used these values to construct a representational dissimilarity matrix, 

and then we reversed the ranks in this matrix to create a representational similarity matrix 

(RSM). We then assessed the relationship between this RSM and the saliency and meaning 

RSMs at each time point for each participant using the same methods as in our main analyses. 

This metric of electrode-independent neural response magnitude was not clearly associated with 

either meaning or saliency, with no statistically significant effects at any time point after FDR 

adjustment. Thus, whereas the pattern of voltage over the scalp was clearly linked to both the 

saliency and meaning maps in the main analysis, we found no evidence for a link with the overall 

ERP magnitude.  

Finally, we also conducted a supplementary analysis to assess the extent to which the 

spatial distribution of low versus high spatial frequencies played a role in the observed results. In 

this analysis, we created versions of the images that contained either only the low spatial 

frequencies or only the high spatial frequencies. Specifically, in line with the approach used by 

Dima, Perry and Smith (2018), we converted the images to grayscale and applied either a low-

pass Gaussian filter with a 3 cycles\degree cutoff (computed based on the visual angle of the 

scenes as presented in the task) or a high-pass filter with a 6 cycles\degree cutoff. Then, as was 

done with the saliency and meaning maps, we correlated the resulting maps at the pixel-by-pixel 

level to form a low spatial frequency RSM and a high spatial frequency RSM. We then 

compared these RSMs with the ERP RSMs using the same methods as in our primary analyses. 

This analysis yielded no link between these two RSMs and the ERP RSM at any point in time, 

with no significant timepoints after FDR correction (peak  r = .014). Thus, similarity in the 

spatial distributions of low versus high spatial frequency information in the images does not 
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appear to impact the similarity of ERP scalp distributions, at least for the set of images used in 

the present study. 

Discussion 

The results of this study indicate that the human brain rapidly extracts information 

associated with the spatial distribution of meaningful scene features shortly after the onset of 

cortical activity, almost as rapidly as it extracts information associated with physical saliency. 

These findings are consistent with the hypothesis that physical saliency is available first, but 

information about the locations of potentially meaningful scene regions is available soon after. 

To the best of our knowledge, the current study is the first to compare the processing time course 

of physical saliency and meaning-related information for natural scenes. This result extends prior 

work showing that the spatial distribution of physical saliency is rapidly represented in the 

frontal eye fields,  in early visual cortex, and in parietal cortex (Gottlieb et al., 1998; Bogler et 

al., 2011; Henderson et al., 2020).  

 The rapid extraction of meaning-related information is consistent with behavioral work 

showing that the spatial distribution of meaningful scene features exerts an influence on even the 

initial shift of overt attention in real-world scenes (Henderson and Hayes, 2017, 2018; Hayes and 

Henderson, 2019; Peacock et al., 2020; Rehrig et al., 2020). Specifically, the 86-ms onset latency 

of the meaning-related activity observed in the present study is sufficiently fast to potentially 

influence even the earliest shifts of overt attention (Thorpe et al., 1996; Fabre-Thorpe et al., 

2001; Gordon, 2004). 

However, it is important to note that participants maintained central fixation throughout 

the present task (to avoid electrooculographic artifacts). This makes it impossible to determine 

whether the observed ERP effects play a causal role in shifts of overt attention (which would be 
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difficult to ascertain even if eye movements were allowed). Nonetheless, these results clearly 

demonstrate that the brain extracts information that is predictive of semantic features sufficiently 

rapidly to guide scene-related eye movements.  

More broadly, these RSA results indicated that similarities in scalp voltage patterns 

across scenes are associated with similarities in physical saliency maps and in meaning maps of 

these scenes. This implies that the neural representations of the spatial distribution of both 

saliency and potentially meaningful scene elements are mapped at a sufficiently large cortical 

scale in the brain that they can be detected even after the substantial spatial filtering that occurs 

when electrical potentials are recorded from the scalp.  

Finer-grained information was provided by the topographical analysis shown in Figure 8, 

in which both physical saliency and meaning-related RSA effects were primarily accounted for 

by signals overlying visual cortex, with some indication of a right hemisphere lateralization for 

physical saliency. This right lateralization for physical saliency is interesting given prior TMS 

work showing evidence for a right-lateralization in posterior regions involved in maintaining 

physical saliency maps across saccades (van Koningsbruggen et al., 2010). While these results 

should be taken with caution given the complex dynamics underlying the generation of observed 

scalp-level EEG topographies (Nunez et al., 2006), it is not unreasonable to hypothesize that the 

effects observed in this study arise from retinotopic activations in visual cortex (DeYoe et al., 

1996; Brewer et al., 2005) or other topographically mapped cortical regions (Arcaro et al., 2009; 

Silver and Kastner, 2009; Arcaro and Livingstone, 2017). 
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Figure 8. Scalp topographies derived from the leave-one-electrode-out analysis. Each scalp map 

presents the unique contribution (in rank correlation units) of each scalp electrode to the 

representational relationship between a given saliency map type and the neural representational 

similarity matrix at a specific time point.  

 
Finally, these results also draw on and contribute to an extensive body of work on the 

neurophysiological processes underlying scene perception. Of particular interest, work by Groen 

et.al (2012, 2013), Henriksson (2019), Kaiser (2020), Cichy (2017), and Harel (2018) indicates 

that the time course of processing for low-level global statistics and scene geometries are similar 

to the time courses observed for the spatial maps of meaning and saliency in the present study. 

Further research into how these various factors interact, particularly with regard to spatial and 

non-spatial features, has significant potential for expanding our understanding of the perceptual 

processing of scenes and how those processes drive shifts of overt attention. 

Varieties of Saliency 

 The original model of visual saliency by Koch and Ullman (1985) defines physical 

saliency based on a model of biologically plausible features that mimic the response of early 

visual processing regions (e.g., V1\LGN). Since then, computational models of saliency have 
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been developed that instead rely on deep neural networks such as AlexNet (Krizhevsky et al., 

2017), VGG16 (Simonyan and Zisserman, 2015), or Resnet (He et al., 2016). These models 

therefore go well beyond the response properties of early visual processing regions. As a result, 

the models include more abstract, higher-level representations of the visual input, so they are not 

pure models of physical saliency. They do not contain semantics per se, but they are trained on 

human response data (e.g., human classification judgments or visual fixations from large 

datasets). As a result, they may be influenced by both physical saliency and the higher-level 

computations that presumably underlie the processing of meaning (Damiano et al., 2019). This 

makes it difficult to isolate physical saliency from semantic features in these models, so they 

were not relevant for the present study's goal of assessing the time courses of these two factors.  

It is worth noting, however, that previous research has found links between the activation 

outputs of such models with patterns of EEG\MEG activity (Dima et al., 2018; Greene and 

Hansen, 2018). Such findings, taken in conjunction with the continued development of more 

biologically inspired neural network models (Schrimpf and Kubilius, 2018; Dapello et al., 2020), 

indicate that this line of research holds considerable promise for shedding light on other 

mechanisms of human vision. 

Limitations and Future Directions 

Although the present results provide strong evidence for the rapid emergence of 

information about the spatial distribution of semantic information in the human brain, some 

limitations must be considered. First, we examined only a single task and a limited number of 

scenes, and it is possible that the time course of physical saliency and meaning-related 

information may differ across tasks and scenes. The majority of behavioral work in this area 

suggests that meaning maps override physical saliency maps in the control of attention across a 
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broad set of scenes and tasks (Henderson and Hayes, 2017, 2018, 2018; Hayes and Henderson, 

2019; Peacock et al., 2019b), but it will be important for future research to explore a broader 

range of tasks and scenes. It will also be important for future research to assess the potential 

moderating influences of other scene-related features such as naturalness and openness.  

A second limitation is that these RSA results are, by definition, correlational. Thus, we 

cannot conclude that the brain was extracting physical saliency and meaningfulness per se, but 

only that the brain was extracting information that is associated with physical saliency and 

meaningfulness. This point is particularly important to note with regard to how quickly the 

representational effect of the meaning maps arose. That is, the fast onset of the meaning-related 

effects may indicate that neurons in visual cortex are tuned to features that are likely to be 

associated with meaningful objects either directly or indirectly (the former being more likely 

given the rapidity of the effect) via feedback from scene\object-selective regions. The causal 

direction of this effect could potentially be assessed with recently developed approaches utilizing 

transcranial magnetic stimulation (Wischnewski and Peelen, 2021). Furthermore, recent work by 

Kiat et al. (in press) suggests that this tuning arises as a product of real-world experience and\or 

other developmental processes, presenting additional directions for further research. 

Third, given the nature of scalp-based EEG, it is difficult to draw firm conclusions 

regarding the specific neural generators and systems underlying these effects.Future 

investigations involving representational similarity-based fusion of EEG\MEG and fMRI data 

(Cichy and Oliva, 2020) could shed light on this issue. 

Fourth, the meaning maps used in this study likely do not fully represent all stages of 

semantic activity related to visual processing. Specifically, the meaning maps largely represent 

the context-free semantic density of local scene regions, excluding contextualized elements such 
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as object-scene semantic relations. These maps were selected as they are currently the best 

candidate available for representing the earliest stages of semantic feature processing. However, 

as scene processing progresses, representations of meaning are likely to become more context-

dependent and less spatiotopically precise. As a result, these representations may no longer 

match the context-independent, spatially precise meaning maps, leading to low representational 

similarity between the ERPs and the meaning maps at later time points. Given prior work 

regarding the time course of contextual and semantic processing (Mudrik et al., 2010; Demiral et 

al., 2012), it is likely that a later, more sustained, link for contextually relevant semantic features 

would be obtained if we used maps that capture actual concepts and/or more contextualized 

aspects of semantic feature processing (Hayes and Henderson, 2021). 

Finally, it is worth noting that the meaning maps used in the present study do not 

represent a theory of the processes underlying scene semantics. These maps instead provide an 

operational tool to quantify the spatial distribution of semantically informative scene elements, 

setting the stage for future investigations focused on disentangling how low-level image features 

are processed and integrated to give rise to semantic informativeness.   
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