An old-school approach to science: "You've got to get yourself a phenomenon"

Given all the questions that have been raised about the reproducibility of scientific findings and the appropriateness of various statistical approaches, it would be easy to get the idea that science is impossible and we haven't learned a single thing about the mind and brain. But that's simply preposterous.  We've learned an amazing amount over the years.

In a previous blog post (and follow-up), I mentioned my graduate mentor's approach, which emphasized self-replication. In this post, I go back to my intellectual grandfather, Bob Galambos, whose discoveries you learned about as a child even if you didn't learn his name. I hope you find his advice useful. It's impractical in some areas of science, but it's what a lot of cognitive psychologists have done for decades and still do today (even though you can't easily tell from their journal articles).  I previously wrote about this in the second edition of An Introduction to the Event-Related Potential Technique, and the following is an excerpt. I am "recycling" this previous text because the relevance of this story goes way beyond ERP research.


My graduate school mentor was Steve Hillyard, who inherited his lab from his own graduate school mentor, Bob Galambos (shown in the photo).  Dr. G (as we often called him) was still quite active after he retired.  He often came to our weekly lab meetings, and I had the opportunity to work on an experiment with him.  He was an amazing scientist who made really fundamental contributions to neuroscience.  For example, when he was a graduate student, he and fellow graduate student Donald Griffin provided the first convincing evidence that bats use echolocation to navigate.  He was also the first person to recognize that glia are not just passive support cells (and this recognition essentially cost him his job at the time).  You can read the details of his interesting life in his autobiography and in his NY Times obituary.

Bob was always a font of wisdom.  My favorite quote from him is this: “You’ve got to get yourself a phenomenon” (he pronounced phenomenon in a slightly funny way, like “pheeeenahmenahn”).  This short statement basically means that you need to start a program of research with a robust experimental effect that you can reliably measure.  Once you’ve figured out the instrumentation, experimental design, and analytic strategy that allows you to reliably measure the effect, then you can start using it to answer interesting scientific questions.  You can’t really answer any interesting questions about the mind or brain unless you have a “phenomenon” that provides an index of the process of interest.  And unless you can figure out how to record this phenomenon in a robust and reliable manner, you will have a hard time making real progress.  So, you need to find a nice phenomenon (like a new ERP component) and figure out the best ways to see that phenomenon clearly and reliably.  Then you will be ready to do some real science!